Suppr超能文献

检测和跟踪量子信息处理器中的漂移。

Detecting and tracking drift in quantum information processors.

作者信息

Proctor Timothy, Revelle Melissa, Nielsen Erik, Rudinger Kenneth, Lobser Daniel, Maunz Peter, Blume-Kohout Robin, Young Kevin

机构信息

Quantum Performance Laboratory, Sandia National Laboratories, Albuquerque, NM, 87185, USA.

Quantum Performance Laboratory, Sandia National Laboratories, Livermore, CA, 94550, USA.

出版信息

Nat Commun. 2020 Oct 26;11(1):5396. doi: 10.1038/s41467-020-19074-4.

Abstract

If quantum information processors are to fulfill their potential, the diverse errors that affect them must be understood and suppressed. But errors typically fluctuate over time, and the most widely used tools for characterizing them assume static error modes and rates. This mismatch can cause unheralded failures, misidentified error modes, and wasted experimental effort. Here, we demonstrate a spectral analysis technique for resolving time dependence in quantum processors. Our method is fast, simple, and statistically sound. It can be applied to time-series data from any quantum processor experiment. We use data from simulations and trapped-ion qubit experiments to show how our method can resolve time dependence when applied to popular characterization protocols, including randomized benchmarking, gate set tomography, and Ramsey spectroscopy. In the experiments, we detect instability and localize its source, implement drift control techniques to compensate for this instability, and then demonstrate that the instability has been suppressed.

摘要

如果量子信息处理器要发挥其潜力,就必须了解并抑制影响它们的各种错误。但错误通常会随时间波动,而用于表征它们的最广泛使用的工具假定错误模式和速率是静态的。这种不匹配可能导致意外失败、错误识别的错误模式以及实验精力的浪费。在这里,我们展示了一种用于解决量子处理器中时间依赖性的光谱分析技术。我们的方法快速、简单且在统计上合理。它可以应用于来自任何量子处理器实验的时间序列数据。我们使用来自模拟和囚禁离子量子比特实验的数据,展示了我们的方法在应用于流行的表征协议(包括随机基准测试、门集层析成像和拉姆齐光谱学)时如何解决时间依赖性。在实验中,我们检测到不稳定性并定位其来源,实施漂移控制技术来补偿这种不稳定性,然后证明不稳定性已得到抑制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验