Suppr超能文献

放射剂量分布对头颈部癌放疗中营养补充需求的影响:基于体素的机器学习方法

Impact of radiation dose distribution on nutritional supplementation needs in head and neck cancer radiotherapy: a voxel-based machine learning approach.

作者信息

Madhavan Sudharsan, Gamez Mauricio, Garces Yolanda I, Lester Scott C, Ma Daniel J, Mundy Daniel W, Neben Wittich Michelle A, Qian Jing, Routman David M, Foote Robert L, Shiraishi Satomi

机构信息

Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States.

出版信息

Front Oncol. 2024 Feb 28;14:1346797. doi: 10.3389/fonc.2024.1346797. eCollection 2024.

Abstract

OBJECTIVES

To investigate the relationship between nutritional supplementation and radiation dose to the pharyngeal constrictor muscles and larynx for head and neck (HN) cancer patients undergoing radiotherapy.

METHODS

We retrospectively analyzed radiotherapy (RT) dose for 231 HN cancer patients, focusing on the pharyngeal constrictors and larynx. We defined nutritional supplementation as feeding tube utilization or >10% weight loss from baseline within 90 days after radiotherapy completion. Using deformable image registration (DIR), we mapped each patient's anatomical structures to a reference coordinate system, and corresponding deformations were applied to dose matrices. Voxel doses were utilized as features for ridge logistic regression models, optimized through 5-fold cross-validation. Model performance was assessed with area under the curve of a receiver operating curve (AUC) and F1 score. We built and compared models using 1) pharyngeal constrictor voxels, 2) larynx voxels, 3) clinical factors and mean regional dose metrics, and 4) clinical factors and dose-volume histogram metrics. Test set AUCs were compared among the models, and feature importance was evaluated.

RESULTS

DIR of the pharyngeal constrictors and larynx yielded mean Dice coefficients of 0.80 and 0.84, respectively. Pharyngeal constrictors voxels and larynx voxel models had AUC of 0.88 and 0.82, respectively. Voxel-based dose modeling identified the superior to middle regions of the pharyngeal constrictors and the superior region of larynx as most predictive of feeding tube use/weight loss. Univariate analysis found treatment setting, treatment laterality, chemotherapy, baseline dysphagia, weight, and socioeconomic status predictive of outcome. An aggregated model using mean doses of pharyngeal constrictors and larynx subregions had an AUC of 0.87 and the model using conventional DVH metrics had an AUC of 0.85 with p-value of 0.04. Feature importance calculations from the regional dose model indicated that mean doses to the superior-middle pharyngeal constrictor muscles followed by mean dose to the superior larynx were most predictive of nutritional supplementation.

CONCLUSIONS

Machine learning modeling of voxel-level doses enables identification of subregions within organs that correlate with toxicity. For HN radiotherapy, doses to the superior-middle pharyngeal constrictors are most predictive of feeding tube use/weight loss followed by the doses to superior portion of the larynx.

摘要

目的

探讨营养补充与接受放疗的头颈癌患者咽缩肌和喉部辐射剂量之间的关系。

方法

我们回顾性分析了231例头颈癌患者的放疗剂量,重点关注咽缩肌和喉部。我们将营养补充定义为使用饲管或放疗结束后90天内体重较基线下降超过10%。使用可变形图像配准(DIR),我们将每位患者的解剖结构映射到一个参考坐标系,并将相应的变形应用于剂量矩阵。体素剂量用作岭逻辑回归模型的特征,通过五折交叉验证进行优化。使用受试者操作曲线(ROC)的曲线下面积(AUC)和F1分数评估模型性能。我们构建并比较了以下模型:1)咽缩肌体素模型,2)喉体素模型,3)临床因素和平均区域剂量指标模型,4)临床因素和剂量体积直方图指标模型。比较各模型的测试集AUC,并评估特征重要性。

结果

咽缩肌和喉部的DIR平均骰子系数分别为0.80和0.84。咽缩肌体素模型和喉体素模型的AUC分别为0.88和0.82。基于体素的剂量建模确定,咽缩肌的上中部区域和喉部的上部区域对饲管使用/体重减轻的预测性最强。单因素分析发现治疗环境、治疗侧别、化疗、基线吞咽困难程度、体重和社会经济状况可预测治疗结果。使用咽缩肌和喉部分区域平均剂量的综合模型的AUC为0.87,使用传统剂量体积直方图(DVH)指标的模型的AUC为0.85,p值为0.04。区域剂量模型的特征重要性计算表明,咽缩肌上中部的平均剂量,其次是喉部上部的平均剂量,对营养补充的预测性最强。

结论

体素级剂量的机器学习建模能够识别与毒性相关的器官内亚区域。对于头颈放疗,咽缩肌上中部的剂量对饲管使用/体重减轻的预测性最强,其次是喉部上部的剂量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7fc/10933045/4774827c5e4a/fonc-14-1346797-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验