IEEE J Biomed Health Inform. 2024 Jun;28(6):3781-3792. doi: 10.1109/JBHI.2024.3377529. Epub 2024 Jun 6.
Disease forecasting is a longstanding problem for the research community, which aims at informing and improving decisions with the best available evidence. Specifically, the interest in respiratory disease forecasting has dramatically increased since the beginning of the coronavirus pandemic, rendering the accurate prediction of influenza-like-illness (ILI) a critical task. Although methods for short-term ILI forecasting and nowcasting have achieved good accuracy, their performance worsens at long-term ILI forecasts. Machine learning models have outperformed conventional forecasting approaches enabling to utilize diverse exogenous data sources, such as social media, internet users' search query logs, and climate data. However, the most recent deep learning ILI forecasting models use only historical occurrence data achieving state-of-the-art results. Inspired by recent deep neural network architectures in time series forecasting, this work proposes the Regional Influenza-Like-Illness Forecasting (ReILIF) method for regional long-term ILI prediction. The proposed architecture takes advantage of diverse exogenous data, that are, meteorological and population data, introducing an efficient intermediate fusion mechanism to combine the different types of information with the aim to capture the variations of ILI from various views. The efficacy of the proposed approach compared to state-of-the-art ILI forecasting methods is confirmed by an extensive experimental study following standard evaluation measures.
疾病预测是研究界长期存在的问题,旨在利用现有最佳证据为决策提供信息和改进。具体来说,自冠状病毒大流行开始以来,人们对呼吸道疾病预测的兴趣显著增加,使得准确预测流感样疾病 (ILI) 成为一项关键任务。尽管短期 ILI 预测和即时预测方法已经达到了较高的准确性,但它们在长期 ILI 预测中的性能会下降。机器学习模型已经超越了传统的预测方法,能够利用各种外部数据源,如社交媒体、互联网用户的搜索查询日志和气候数据。然而,最近的深度学习 ILI 预测模型仅使用历史发生数据就能达到最先进的结果。受时间序列预测中最近的深度神经网络架构的启发,本研究提出了区域流感样疾病预测 (ReILIF) 方法,用于区域长期 ILI 预测。所提出的架构利用了多样化的外部数据,即气象和人口数据,引入了一种有效的中间融合机制,将不同类型的信息结合起来,旨在从不同角度捕捉 ILI 的变化。通过遵循标准评估指标的广泛实验研究,验证了所提出方法与最先进的 ILI 预测方法相比的有效性。