Suppr超能文献

基于长短时记忆模型的流感样疾病传播预测:利用监测、气象和推特数据:模型开发和验证。

Long Short-term Memory-Based Prediction of the Spread of Influenza-Like Illness Leveraging Surveillance, Weather, and Twitter Data: Model Development and Validation.

机构信息

School of Electrical and Computer Engineering, National Technical University of Athens, Zografos, Athens, Greece.

出版信息

J Med Internet Res. 2023 Feb 6;25:e42519. doi: 10.2196/42519.

Abstract

BACKGROUND

The potential to harness the plurality of available data in real time along with advanced data analytics for the accurate prediction of influenza-like illness (ILI) outbreaks has gained significant scientific interest. Different methodologies based on the use of machine learning techniques and traditional and alternative data sources, such as ILI surveillance reports, weather reports, search engine queries, and social media, have been explored with the ultimate goal of being used in the development of electronic surveillance systems that could complement existing monitoring resources.

OBJECTIVE

The scope of this study was to investigate for the first time the combined use of ILI surveillance data, weather data, and Twitter data along with deep learning techniques toward the development of prediction models able to nowcast and forecast weekly ILI cases. By assessing the predictive power of both traditional and alternative data sources on the use case of ILI, this study aimed to provide a novel approach for corroborating evidence and enhancing accuracy and reliability in the surveillance of infectious diseases.

METHODS

The model's input space consisted of information related to weekly ILI surveillance, web-based social (eg, Twitter) behavior, and weather conditions. For the design and development of the model, relevant data corresponding to the period of 2010 to 2019 and focusing on the Greek population and weather were collected. Long short-term memory (LSTM) neural networks were leveraged to efficiently handle the sequential and nonlinear nature of the multitude of collected data. The 3 data categories were first used separately for training 3 LSTM-based primary models. Subsequently, different transfer learning (TL) approaches were explored with the aim of creating various feature spaces combining the features extracted from the corresponding primary models' LSTM layers for the latter to feed a dense layer.

RESULTS

The primary model that learned from weather data yielded better forecast accuracy (root mean square error [RMSE]=0.144; Pearson correlation coefficient [PCC]=0.801) than the model trained with ILI historical data (RMSE=0.159; PCC=0.794). The best performance was achieved by the TL-based model leveraging the combination of the 3 data categories (RMSE=0.128; PCC=0.822).

CONCLUSIONS

The superiority of the TL-based model, which considers Twitter data, weather data, and ILI surveillance data, reflects the potential of alternative public sources to enhance accurate and reliable prediction of ILI spread. Despite its focus on the use case of Greece, the proposed approach can be generalized to other locations, populations, and social media platforms to support the surveillance of infectious diseases with the ultimate goal of reinforcing preparedness for future epidemics.

摘要

背景

利用实时可用数据的多样性并结合先进的数据分析来准确预测流感样疾病 (ILI) 爆发的潜力引起了科学界的极大兴趣。已经探索了基于机器学习技术和传统及替代数据源(如 ILI 监测报告、天气报告、搜索引擎查询和社交媒体)的不同方法,其最终目标是开发电子监测系统,以补充现有监测资源。

目的

本研究的范围是首次调查将 ILI 监测数据、天气数据和 Twitter 数据与深度学习技术结合使用,以开发能够实时和预测ILI 周病例的预测模型。通过评估传统和替代数据源在 ILI 用例上的预测能力,本研究旨在提供一种新方法来佐证证据,并提高传染病监测的准确性和可靠性。

方法

该模型的输入空间包括与每周 ILI 监测、基于网络的社交(例如 Twitter)行为和天气条件相关的信息。为了设计和开发该模型,收集了与 2010 年至 2019 年期间和针对希腊人口和天气的相关数据。长短期记忆 (LSTM) 神经网络被用于高效处理所收集数据的顺序和非线性性质。首先,将这 3 个数据类别分别用于训练 3 个基于 LSTM 的主要模型。随后,探索了不同的迁移学习 (TL) 方法,旨在通过创建从相应主要模型的 LSTM 层中提取的特征的各种特征空间,将这些特征组合起来,以供后者输入到密集层。

结果

从天气数据中学习的主要模型的预测精度(均方根误差 [RMSE]=0.144;皮尔逊相关系数 [PCC]=0.801)优于从 ILI 历史数据中训练的模型(RMSE=0.159;PCC=0.794)。表现最佳的是利用这 3 个数据类别组合的基于 TL 的模型(RMSE=0.128;PCC=0.822)。

结论

基于 TL 的模型的优越性,它考虑了 Twitter 数据、天气数据和 ILI 监测数据,反映了替代公共数据源在提高 ILI 传播准确可靠预测方面的潜力。尽管本研究侧重于希腊的用例,但所提出的方法可以推广到其他地点、人群和社交媒体平台,以支持传染病监测,最终目标是加强对未来疫情的准备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbf8/9941907/1b3b1af62e0f/jmir_v25i1e42519_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验