Chen Hui, Xing Yuqing, Tan Hengxin, Huang Li, Zheng Qi, Huang Zihao, Han Xianghe, Hu Bin, Ye Yuhan, Li Yan, Xiao Yao, Lei Hechang, Qiu Xianggang, Liu Enke, Yang Haitao, Wang Ziqiang, Yan Binghai, Gao Hong-Jun
Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
Nat Commun. 2024 Mar 14;15(1):2301. doi: 10.1038/s41467-024-46729-3.
Atomically precise defect engineering is essential to manipulate the properties of emerging topological quantum materials for practical quantum applications. However, this remains challenging due to the obstacles in modifying the typically complex crystal lattice with atomic precision. Here, we report the atomically precise engineering of the vacancy-localized spin-orbit polarons in a kagome magnetic Weyl semimetal CoSnS, using scanning tunneling microscope. We achieve the step-by-step repair of the selected vacancies, leading to the formation of artificial sulfur vacancies with elaborate geometry. We find that that the bound states localized around these vacancies undergo a symmetry dependent energy shift towards Fermi level with increasing vacancy size. As the vacancy size increases, the localized magnetic moments of spin-orbit polarons become tunable and eventually become itinerantly negative due to spin-orbit coupling in the kagome flat band. These findings provide a platform for engineering atomic quantum states in topological quantum materials at the atomic scale.
原子精确的缺陷工程对于操纵新兴拓扑量子材料的性质以实现实际量子应用至关重要。然而,由于以原子精度修改通常复杂的晶格存在障碍,这仍然具有挑战性。在这里,我们报告了使用扫描隧道显微镜对 Kagome 磁性外尔半金属 CoSnS 中空位局域化的自旋轨道极化子进行原子精确工程。我们实现了对选定空位的逐步修复,导致形成具有精细几何形状的人工硫空位。我们发现,围绕这些空位局域的束缚态随着空位尺寸的增加经历了依赖于对称性的向费米能级的能量移动。随着空位尺寸的增加,自旋轨道极化子的局域磁矩变得可调谐,并且由于 Kagome 平带中的自旋轨道耦合最终变为巡游性负磁矩。这些发现为在原子尺度上对拓扑量子材料中的原子量子态进行工程设计提供了一个平台。