Suppr超能文献

水分活度的综合保存是强化生物基苯乙烯衍生物化学酶法合成的关键。

Integrated preservation of water activity as key to intensified chemoenzymatic synthesis of bio-based styrene derivatives.

作者信息

Petermeier Philipp, Bittner Jan Philipp, Jonsson Tobias, Domínguez de María Pablo, Byström Emil, Kara Selin

机构信息

Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus C, Denmark.

Institute of Thermal Separation Processes, Hamburg University of Technology, 21073, Hamburg, Germany.

出版信息

Commun Chem. 2024 Mar 14;7(1):57. doi: 10.1038/s42004-024-01138-x.

Abstract

The valorization of lignin-derived feedstocks by catalytic means enables their defunctionalization and upgrading to valuable products. However, the development of productive, safe, and low-waste processes remains challenging. This paper explores the industrial potential of a chemoenzymatic reaction performing the decarboxylation of bio-based phenolic acids in wet cyclopentyl methyl ether (CPME) by immobilized phenolic acid decarboxylase from Bacillus subtilis, followed by a base-catalyzed acylation. Key-to-success is the continuous control of water activity, which fluctuates along the reaction progress, particularly at high substrate loadings (triggered by different hydrophilicities of substrate and product). A combination of experimentation, thermodynamic equilibrium calculations, and MD simulations revealed the change in water activity which guided the integration of water reservoirs and allowed process intensification of the previously limiting enzymatic step. With this, the highly concentrated sequential two-step cascade (400 g·L) achieves full conversions and affords products in less than 3 h. The chemical step is versatile, accepting different acyl donors, leading to a range of industrially sound products. Importantly, the finding that water activity changes in intensified processes is an academic insight that might explain other deactivations of enzymes when used in non-conventional media.

摘要

通过催化手段对木质素衍生原料进行增值处理,能够使其脱功能化并升级为有价值的产品。然而,开发高效、安全且低废物排放的工艺仍然具有挑战性。本文探讨了一种化学酶促反应的工业潜力,该反应利用枯草芽孢杆菌固定化酚酸脱羧酶在湿环戊基甲基醚(CPME)中对生物基酚酸进行脱羧反应,随后进行碱催化酰化反应。成功的关键在于持续控制水分活度,水分活度会随着反应进程而波动,尤其是在高底物负载量时(由底物和产物不同的亲水性引发)。实验、热力学平衡计算和分子动力学模拟相结合,揭示了水分活度的变化,这指导了储水器的整合,并实现了先前受限的酶促步骤的过程强化。由此,高浓度的连续两步级联反应(400 g·L)实现了完全转化,并在不到3小时内得到产物。化学步骤具有通用性,可接受不同的酰基供体,从而得到一系列具有工业应用价值的产品。重要的是,强化过程中水分活度会发生变化这一发现是一项学术见解,可能解释了酶在非传统介质中使用时的其他失活现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e0a/10940287/17ae379fca18/42004_2024_1138_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验