Suppr超能文献

基于子模型自适应选择集成的息肉分割双重集成系统。

Dual ensemble system for polyp segmentation with submodels adaptive selection ensemble.

机构信息

Guilin University of Electronic Technology, Guilin, 541000, China.

China Electronics Standardization Institute, Beijing, 100007, China.

出版信息

Sci Rep. 2024 Mar 14;14(1):6152. doi: 10.1038/s41598-024-56264-2.

Abstract

Colonoscopy is one of the main methods to detect colon polyps, and its detection is widely used to prevent and diagnose colon cancer. With the rapid development of computer vision, deep learning-based semantic segmentation methods for colon polyps have been widely researched. However, the accuracy and stability of some methods in colon polyp segmentation tasks show potential for further improvement. In addition, the issue of selecting appropriate sub-models in ensemble learning for the colon polyp segmentation task still needs to be explored. In order to solve the above problems, we first implement the utilization of multi-complementary high-level semantic features through the Multi-Head Control Ensemble. Then, to solve the sub-model selection problem in training, we propose SDBH-PSO Ensemble for sub-model selection and optimization of ensemble weights for different datasets. The experiments were conducted on the public datasets CVC-ClinicDB, Kvasir, CVC-ColonDB, ETIS-LaribPolypDB and PolypGen. The results show that the DET-Former, constructed based on the Multi-Head Control Ensemble and the SDBH-PSO Ensemble, consistently provides improved accuracy across different datasets. Among them, the Multi-Head Control Ensemble demonstrated superior feature fusion capability in the experiments, and the SDBH-PSO Ensemble demonstrated excellent sub-model selection capability. The sub-model selection capabilities of the SDBH-PSO Ensemble will continue to have significant reference value and practical utility as deep learning networks evolve.

摘要

结肠镜检查是检测结肠息肉的主要方法之一,其检测被广泛用于预防和诊断结肠癌。随着计算机视觉的快速发展,基于深度学习的结肠息肉语义分割方法得到了广泛的研究。然而,一些方法在结肠息肉分割任务中的准确性和稳定性仍有进一步提高的潜力。此外,在集合学习中选择适当的子模型来进行结肠息肉分割任务仍需要进一步探索。为了解决上述问题,我们首先通过多头控制集成实现了多互补高级语义特征的利用。然后,为了解决训练中的子模型选择问题,我们提出了 SDBH-PSO 集成算法,用于不同数据集的子模型选择和集成权重的优化。实验在公共数据集 CVC-ClinicDB、Kvasir、CVC-ColonDB、ETIS-LaribPolypDB 和 PolypGen 上进行。结果表明,基于多头控制集成和 SDBH-PSO 集成构建的 DET-Former 在不同数据集上均能提供更准确的结果。其中,多头控制集成在实验中表现出了优越的特征融合能力,而 SDBH-PSO 集成则表现出了卓越的子模型选择能力。随着深度学习网络的不断发展,SDBH-PSO 集成的子模型选择能力将继续具有重要的参考价值和实际应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dabd/10940608/1dcaffbd62c8/41598_2024_56264_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验