Department of Information Engineering, University of Padova, 35122 Padova, Italy.
Department of Information Engineering, University of Brescia, 25121 Brescia, Italy.
Sensors (Basel). 2023 May 12;23(10):4688. doi: 10.3390/s23104688.
In the realm of computer vision, semantic segmentation is the task of recognizing objects in images at the pixel level. This is done by performing a classification of each pixel. The task is complex and requires sophisticated skills and knowledge about the context to identify objects' boundaries. The importance of semantic segmentation in many domains is undisputed. In medical diagnostics, it simplifies the early detection of pathologies, thus mitigating the possible consequences. In this work, we provide a review of the literature on deep ensemble learning models for polyp segmentation and develop new ensembles based on convolutional neural networks and transformers. The development of an effective ensemble entails ensuring diversity between its components. To this end, we combined different models (HarDNet-MSEG, Polyp-PVT, and HSNet) trained with different data augmentation techniques, optimization methods, and learning rates, which we experimentally demonstrate to be useful to form a better ensemble. Most importantly, we introduce a new method to obtain the segmentation mask by averaging intermediate masks after the sigmoid layer. In our extensive experimental evaluation, the average performance of the proposed ensembles over five prominent datasets beat any other solution that we know of. Furthermore, the ensembles also performed better than the state-of-the-art on two of the five datasets, when individually considered, without having been specifically trained for them.
在计算机视觉领域,语义分割是指在图像中对像素级别的物体进行分类的任务。这是通过对每个像素进行分类来实现的。这个任务非常复杂,需要有精湛的技能和对上下文的深入理解才能识别物体的边界。语义分割在许多领域的重要性是不容置疑的。在医学诊断中,它可以简化对病变的早期检测,从而减轻可能的后果。在这项工作中,我们对用于息肉分割的深度集成学习模型进行了文献综述,并基于卷积神经网络和转换器开发了新的集成模型。开发有效的集成模型需要确保其组件之间的多样性。为此,我们结合了不同的模型(HarDNet-MSEG、Polyp-PVT 和 HSNet),这些模型使用了不同的数据增强技术、优化方法和学习率进行训练,我们通过实验证明这些方法有助于形成更好的集成模型。最重要的是,我们引入了一种新的方法,通过在 sigmoid 层之后对中间掩模进行平均来获得分割掩模。在我们广泛的实验评估中,所提出的五个集成模型在五个著名数据集上的平均性能优于我们所知道的任何其他解决方案。此外,当单独考虑时,这些集成模型在其中两个数据集上的表现也优于最新技术,而无需专门针对它们进行训练。