Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Henan University of Science and Technology, Luoyang 471000, China.
Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Beijing Key Laboratory Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China.
Comput Med Imaging Graph. 2022 Jun;98:102072. doi: 10.1016/j.compmedimag.2022.102072. Epub 2022 May 11.
In clinical practice, automatic polyp segmentation from colonoscopy images is an effective assistant manner in the early detection and prevention of colorectal cancer. This paper proposed a new deep model for accurate polyp segmentation based on an encoder-decoder framework. ResNet50 is adopted as the encoder, and three functional modules are introduced to improve the performance. Firstly, a hybrid channel-spatial attention module is introduced to reweight the encoder features spatially and channel-wise, enhancing the critical features for the segmentation task while suppressing irrelevant ones. Secondly, a global context pyramid feature extraction module and a series of global context flows are proposed to extract and deliver the global context information. The former captures the multi-scale and multi-receptive-field global context information, while the latter explicitly transmits the global context information to each decoder level. Finally, a feature fusion module is designed to effectively incorporate the high-level features, low-level features, and global context information, considering the gaps between different features. These modules help the model fully exploit the global context information to deduce the complete polyp regions. Extensive experiments are conducted on five public colorectal polyp datasets. The results demonstrate that the proposed network has powerful learning and generalization capability, significantly improving segmentation accuracy and outperforming state-of-the-art methods.
在临床实践中,自动从结肠镜图像中分割息肉是结直肠癌早期检测和预防的有效辅助手段。本文提出了一种新的基于编解码器框架的精确息肉分割深度模型。该模型采用 ResNet50 作为编码器,并引入了三个功能模块来提高性能。首先,引入了一种混合通道-空间注意力模块,对编码器特征进行空间和通道上的重新加权,增强对分割任务关键的特征,同时抑制不相关的特征。其次,提出了一个全局上下文金字塔特征提取模块和一系列全局上下文流,用于提取和传递全局上下文信息。前者捕获多尺度和多感受野的全局上下文信息,而后者则明确地将全局上下文信息传递到每个解码器级别。最后,设计了一个特征融合模块,以有效地结合高层特征、低层特征和全局上下文信息,考虑到不同特征之间的差距。这些模块有助于模型充分利用全局上下文信息来推断完整的息肉区域。在五个公共的结直肠息肉数据集上进行了广泛的实验。结果表明,所提出的网络具有强大的学习和泛化能力,显著提高了分割精度,优于现有的方法。