Suppr超能文献

在用于医学成像的私有大规模人工智能模型中保持公平性和诊断准确性。

Preserving fairness and diagnostic accuracy in private large-scale AI models for medical imaging.

作者信息

Tayebi Arasteh Soroosh, Ziller Alexander, Kuhl Christiane, Makowski Marcus, Nebelung Sven, Braren Rickmer, Rueckert Daniel, Truhn Daniel, Kaissis Georgios

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany.

Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany.

出版信息

Commun Med (Lond). 2024 Mar 14;4(1):46. doi: 10.1038/s43856-024-00462-6.

Abstract

BACKGROUND

Artificial intelligence (AI) models are increasingly used in the medical domain. However, as medical data is highly sensitive, special precautions to ensure its protection are required. The gold standard for privacy preservation is the introduction of differential privacy (DP) to model training. Prior work indicates that DP has negative implications on model accuracy and fairness, which are unacceptable in medicine and represent a main barrier to the widespread use of privacy-preserving techniques. In this work, we evaluated the effect of privacy-preserving training of AI models regarding accuracy and fairness compared to non-private training.

METHODS

We used two datasets: (1) A large dataset (N = 193,311) of high quality clinical chest radiographs, and (2) a dataset (N = 1625) of 3D abdominal computed tomography (CT) images, with the task of classifying the presence of pancreatic ductal adenocarcinoma (PDAC). Both were retrospectively collected and manually labeled by experienced radiologists. We then compared non-private deep convolutional neural networks (CNNs) and privacy-preserving (DP) models with respect to privacy-utility trade-offs measured as area under the receiver operating characteristic curve (AUROC), and privacy-fairness trade-offs, measured as Pearson's r or Statistical Parity Difference.

RESULTS

We find that, while the privacy-preserving training yields lower accuracy, it largely does not amplify discrimination against age, sex or co-morbidity. However, we find an indication that difficult diagnoses and subgroups suffer stronger performance hits in private training.

CONCLUSIONS

Our study shows that - under the challenging realistic circumstances of a real-life clinical dataset - the privacy-preserving training of diagnostic deep learning models is possible with excellent diagnostic accuracy and fairness.

摘要

背景

人工智能(AI)模型在医学领域的应用日益广泛。然而,由于医学数据高度敏感,需要采取特殊措施确保其得到保护。隐私保护的黄金标准是在模型训练中引入差分隐私(DP)。先前的研究表明,DP对模型的准确性和公平性有负面影响,而这在医学领域是不可接受的,并且是隐私保护技术广泛应用的主要障碍。在这项工作中,我们评估了与非隐私训练相比,人工智能模型的隐私保护训练对准确性和公平性的影响。

方法

我们使用了两个数据集:(1)一个包含193,311份高质量临床胸部X光片的大型数据集,以及(2)一个包含1625份三维腹部计算机断层扫描(CT)图像的数据集,其任务是对胰腺导管腺癌(PDAC)的存在进行分类。这两个数据集均为回顾性收集,并由经验丰富的放射科医生进行手动标注。然后,我们比较了非隐私深度卷积神经网络(CNN)和隐私保护(DP)模型在以受试者工作特征曲线下面积(AUROC)衡量的隐私-效用权衡,以及以皮尔逊相关系数r或统计均等差异衡量的隐私-公平权衡方面的表现。

结果

我们发现,虽然隐私保护训练会导致准确性降低,但在很大程度上不会加剧对年龄、性别或合并症的歧视。然而,我们发现有迹象表明,在隐私训练中,疑难诊断和亚组的表现受到的影响更大。

结论

我们的研究表明,在真实临床数据集具有挑战性的现实情况下,诊断深度学习模型的隐私保护训练可以在保持出色诊断准确性和公平性的情况下实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b24/10940659/c0fe96cc0cd5/43856_2024_462_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验