Suppr超能文献

将 2D 卷积用于 3D 图像。

Reinventing 2D Convolutions for 3D Images.

出版信息

IEEE J Biomed Health Inform. 2021 Aug;25(8):3009-3018. doi: 10.1109/JBHI.2021.3049452. Epub 2021 Aug 5.

Abstract

There have been considerable debates over 2D and 3D representation learning on 3D medical images. 2D approaches could benefit from large-scale 2D pretraining, whereas they are generally weak in capturing large 3D contexts. 3D approaches are natively strong in 3D contexts, however few publicly available 3D medical dataset is large and diverse enough for universal 3D pretraining. Even for hybrid (2D + 3D) approaches, the intrinsic disadvantages within the 2D/3D parts still exist. In this study, we bridge the gap between 2D and 3D convolutions by reinventing the 2D convolutions. We propose ACS (axial-coronal-sagittal) convolutions to perform natively 3D representation learning, while utilizing the pretrained weights on 2D datasets. In ACS convolutions, 2D convolution kernels are split by channel into three parts, and convoluted separately on the three views (axial, coronal and sagittal) of 3D representations. Theoretically, ANY 2D CNN (ResNet, DenseNet, or DeepLab) is able to be converted into a 3D ACS CNN, with pretrained weight of a same parameter size. Extensive experiments validate the consistent superiority of the pretrained ACS CNNs, over the 2D/3D CNN counterparts with/without pretraining. Even without pretraining, the ACS convolution can be used as a plug-and-play replacement of standard 3D convolution, with smaller model size and less computation.

摘要

在医学 3D 图像的 2D 和 3D 表示学习方面存在着大量的争论。2D 方法可以从大规模的 2D 预训练中受益,而它们在捕捉大 3D 上下文方面通常较弱。3D 方法在 3D 上下文中具有天然的优势,但是很少有公开的大型且多样化的 3D 医学数据集可用于通用的 3D 预训练。即使对于混合(2D+3D)方法,2D/3D 部分中的内在劣势仍然存在。在这项研究中,我们通过重新发明 2D 卷积来弥合 2D 和 3D 卷积之间的差距。我们提出 ACS(轴向-冠状-矢状)卷积来进行自然的 3D 表示学习,同时利用 2D 数据集上的预训练权重。在 ACS 卷积中,2D 卷积核按通道分为三部分,并在 3D 表示的三个视图(轴向、冠状和矢状)上分别卷积。从理论上讲,任何 2D CNN(ResNet、DenseNet 或 DeepLab)都能够转换为 3D ACS CNN,并且具有相同参数大小的预训练权重。广泛的实验验证了预训练的 ACS CNN 的一致性优势,超过了具有/不具有预训练的 2D/3D CNN 对应物。即使没有预训练,ACS 卷积也可以作为标准 3D 卷积的即插即用替代,具有更小的模型大小和更少的计算量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验