Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong, China.
Adult Intensive Care Unit, Queen Mary Hospital, Hong Kong, China.
BMC Nephrol. 2024 Mar 14;25(1):95. doi: 10.1186/s12882-024-03538-6.
Chronic kidney disease (CKD) requires accurate prediction of renal replacement therapy (RRT) initiation risk. This study developed deep learning algorithms (DLAs) to predict RRT risk in CKD patients by incorporating medical history and prescriptions in addition to biochemical investigations.
A multi-centre retrospective cohort study was conducted in three major hospitals in Hong Kong. CKD patients with an eGFR < 30ml/min/1.73m were included. DLAs of various structures were created and trained using patient data. Using a test set, the DLAs' predictive performance was compared to Kidney Failure Risk Equation (KFRE).
DLAs outperformed KFRE in predicting RRT initiation risk (CNN + LSTM + ANN layers ROC-AUC = 0.90; CNN ROC-AUC = 0.91; 4-variable KFRE: ROC-AUC = 0.84; 8-variable KFRE: ROC-AUC = 0.84). DLAs accurately predicted uncoded renal transplants and patients requiring dialysis after 5 years, demonstrating their ability to capture non-linear relationships.
DLAs provide accurate predictions of RRT risk in CKD patients, surpassing traditional methods like KFRE. Incorporating medical history and prescriptions improves prediction performance. While our findings suggest that DLAs hold promise for improving patient care and resource allocation in CKD management, further prospective observational studies and randomized controlled trials are necessary to fully understand their impact, particularly regarding DLA interpretability, bias minimization, and overfitting reduction. Overall, our research underscores the emerging role of DLAs as potentially valuable tools in advancing the management of CKD and predicting RRT initiation risk.
慢性肾脏病(CKD)需要准确预测肾脏替代治疗(RRT)的起始风险。本研究通过纳入病史和处方等医疗信息,开发了深度学习算法(DLAs)来预测 CKD 患者的 RRT 风险。
本研究在香港的三家主要医院进行了一项多中心回顾性队列研究。纳入 eGFR<30ml/min/1.73m 的 CKD 患者。使用患者数据创建和训练了各种结构的 DLAs。通过测试集,比较了 DLAs 与 Kidney Failure Risk Equation (KFRE) 的预测性能。
在预测 RRT 起始风险方面,DLAs 优于 KFRE(CNN+LSTM+ANN 层 ROC-AUC=0.90;CNN ROC-AUC=0.91;4 变量 KFRE:ROC-AUC=0.84;8 变量 KFRE:ROC-AUC=0.84)。DLAs 能够准确预测未编码的肾移植和 5 年后需要透析的患者,表明它们能够捕捉到非线性关系。
DLAs 可准确预测 CKD 患者的 RRT 风险,优于 KFRE 等传统方法。纳入病史和处方可提高预测性能。虽然我们的研究结果表明,DLAs 有希望改善 CKD 管理中的患者护理和资源分配,但需要进一步进行前瞻性观察性研究和随机对照试验,以充分了解它们的影响,特别是关于 DLA 的可解释性、偏差最小化和过拟合减少。总体而言,我们的研究强调了 DLAs 在推进 CKD 管理和预测 RRT 起始风险方面作为潜在有价值工具的新兴作用。