文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种临床适用的急性肾损伤未来发生的连续预测方法。

A clinically applicable approach to continuous prediction of future acute kidney injury.

机构信息

DeepMind, London, UK.

CoMPLEX, Computer Science, University College London, London, UK.

出版信息

Nature. 2019 Aug;572(7767):116-119. doi: 10.1038/s41586-019-1390-1. Epub 2019 Jul 31.


DOI:10.1038/s41586-019-1390-1
PMID:31367026
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6722431/
Abstract

The early prediction of deterioration could have an important role in supporting healthcare professionals, as an estimated 11% of deaths in hospital follow a failure to promptly recognize and treat deteriorating patients. To achieve this goal requires predictions of patient risk that are continuously updated and accurate, and delivered at an individual level with sufficient context and enough time to act. Here we develop a deep learning approach for the continuous risk prediction of future deterioration in patients, building on recent work that models adverse events from electronic health records and using acute kidney injury-a common and potentially life-threatening condition-as an exemplar. Our model was developed on a large, longitudinal dataset of electronic health records that cover diverse clinical environments, comprising 703,782 adult patients across 172 inpatient and 1,062 outpatient sites. Our model predicts 55.8% of all inpatient episodes of acute kidney injury, and 90.2% of all acute kidney injuries that required subsequent administration of dialysis, with a lead time of up to 48 h and a ratio of 2 false alerts for every true alert. In addition to predicting future acute kidney injury, our model provides confidence assessments and a list of the clinical features that are most salient to each prediction, alongside predicted future trajectories for clinically relevant blood tests. Although the recognition and prompt treatment of acute kidney injury is known to be challenging, our approach may offer opportunities for identifying patients at risk within a time window that enables early treatment.

摘要

早期预测病情恶化可能在支持医疗保健专业人员方面发挥重要作用,因为据估计,医院中有 11%的死亡病例是由于未能及时识别和治疗病情恶化的患者导致的。要实现这一目标,需要能够持续更新且准确的患者风险预测,并在个体层面上提供足够的上下文和足够的时间来采取行动。在这里,我们开发了一种深度学习方法,用于对患者未来的恶化风险进行连续预测,该方法基于最近从电子健康记录中建模不良事件的工作,并以急性肾损伤(一种常见且潜在威胁生命的疾病)为例。我们的模型是在一个包含 703782 名成年患者的大型纵向电子健康记录数据集上开发的,该数据集涵盖了各种临床环境,包括 172 个住院和 1062 个门诊站点。我们的模型预测了 55.8%的住院急性肾损伤病例,以及 90.2%需要后续进行透析治疗的急性肾损伤病例,其提前期长达 48 小时,每发出 2 次错误警报,就会有 1 次正确警报。除了预测未来的急性肾损伤外,我们的模型还提供了置信度评估以及对每个预测最相关的临床特征的列表,以及对临床相关血液测试的未来预测轨迹。虽然急性肾损伤的识别和及时治疗是众所周知的挑战,但我们的方法可能为在能够进行早期治疗的时间窗口内识别风险患者提供机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/ea47fc01d152/nihms-1532381-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/e5963b124c67/nihms-1532381-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/3b04ad5de34a/nihms-1532381-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/a256e7f0789a/nihms-1532381-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/d53962784094/nihms-1532381-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/e08727176c2c/nihms-1532381-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/e8ab14b664ad/nihms-1532381-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/ea47fc01d152/nihms-1532381-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/e5963b124c67/nihms-1532381-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/3b04ad5de34a/nihms-1532381-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/a256e7f0789a/nihms-1532381-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/d53962784094/nihms-1532381-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/e08727176c2c/nihms-1532381-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/e8ab14b664ad/nihms-1532381-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e56/6722431/ea47fc01d152/nihms-1532381-f0003.jpg

相似文献

[1]
A clinically applicable approach to continuous prediction of future acute kidney injury.

Nature. 2019-7-31

[2]
Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care.

Crit Care. 2021-8-10

[3]
Health Care Analytics With Time-Invariant and Time-Variant Feature Importance to Predict Hospital-Acquired Acute Kidney Injury: Observational Longitudinal Study.

J Med Internet Res. 2021-12-24

[4]
Vesicoureteral Reflux

2025-1

[5]
Predicting AKI in emergency admissions: an external validation study of the acute kidney injury prediction score (APS).

BMJ Open. 2017-3-8

[6]
Real-Time Prediction of Acute Kidney Injury in Hospitalized Adults: Implementation and Proof of Concept.

Am J Kidney Dis. 2020-6-4

[7]
Electronic health record alerts for acute kidney injury: multicenter, randomized clinical trial.

BMJ. 2021-1-18

[8]
Biomarkers for assessing acute kidney injury for people who are being considered for admission to critical care: a systematic review and cost-effectiveness analysis.

Health Technol Assess. 2022-1

[9]
Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial.

Lancet. 2015-5-16

[10]
Risk prediction for acute kidney disease and adverse outcomes in patients with chronic obstructive pulmonary disease: an interpretable machine learning approach.

Ren Fail. 2025-12

引用本文的文献

[1]
Development and validation of an interpretable multi-task model to predict outcomes in patients with rhabdomyolysis: a multicenter retrospective cohort study.

EClinicalMedicine. 2025-8-21

[2]
The application of machine learning in predicting post-cardiac surgery acute kidney injury in pediatric patients: a systematic review.

Front Pediatr. 2025-8-12

[3]
Development and Validation of a Machine Learning Model for Early Prediction of Acute Kidney Injury in Neurocritical Care: A Comparative Analysis of XGBoost, GBM, and Random Forest Algorithms.

Diagnostics (Basel). 2025-8-17

[4]
Creating Digital Health Technology for Gender Equity: a Capabilities Approach.

Public Health Ethics. 2025-8-22

[5]
Predicting Chronic Kidney Disease After Cisplatin Treatment Using Population-Level Data.

JAMA Oncol. 2025-8-21

[6]
Current Progress in the CT- and MRI-Based Detection and Evaluation of Acute Pancreatitis Complications.

Med Sci Monit. 2025-8-10

[7]
Real-time prediction of intensive care unit patient acuity and therapy requirements using state-space modelling.

Nat Commun. 2025-8-8

[8]
Artificial intelligence and robotic surgery in clinical medicine: progress, challenges, and future directions.

Future Sci OA. 2025-12

[9]
Development and validation of a risk prediction model for perioperative acute kidney injury in non-cardiac and non-urological surgery patients: a retrospective cohort study.

Front Physiol. 2025-7-17

[10]
Artificial intelligence in hepatopancreatobiliary surgery for clinical outcome prediction: current perspective and future direction.

J Robot Surg. 2025-7-31

本文引用的文献

[1]
Scalable and accurate deep learning with electronic health records.

NPJ Digit Med. 2018-5-8

[2]
The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data.

Pac Symp Biocomput. 2019

[3]
The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.

Nat Med. 2018-10-22

[4]
Clinically applicable deep learning for diagnosis and referral in retinal disease.

Nat Med. 2018-8-13

[5]
Prediction of Acute Kidney Injury With a Machine Learning Algorithm Using Electronic Health Record Data.

Can J Kidney Health Dis. 2018-6-8

[6]
Predicting Inpatient Acute Kidney Injury over Different Time Horizons: How Early and Accurate?

AMIA Annu Symp Proc. 2018-4-16

[7]
The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model.

Crit Care Med. 2018-7

[8]
Rethinking the medical record.

Lancet. 2018-3-17

[9]
MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery.

Ann Surg. 2019-4

[10]
Impact of Electronic Acute Kidney Injury (AKI) Alerts With Automated Nephrologist Consultation on Detection and Severity of AKI: A Quality Improvement Study.

Am J Kidney Dis. 2017-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索