DeepMind, London, UK.
CoMPLEX, Computer Science, University College London, London, UK.
Nature. 2019 Aug;572(7767):116-119. doi: 10.1038/s41586-019-1390-1. Epub 2019 Jul 31.
The early prediction of deterioration could have an important role in supporting healthcare professionals, as an estimated 11% of deaths in hospital follow a failure to promptly recognize and treat deteriorating patients. To achieve this goal requires predictions of patient risk that are continuously updated and accurate, and delivered at an individual level with sufficient context and enough time to act. Here we develop a deep learning approach for the continuous risk prediction of future deterioration in patients, building on recent work that models adverse events from electronic health records and using acute kidney injury-a common and potentially life-threatening condition-as an exemplar. Our model was developed on a large, longitudinal dataset of electronic health records that cover diverse clinical environments, comprising 703,782 adult patients across 172 inpatient and 1,062 outpatient sites. Our model predicts 55.8% of all inpatient episodes of acute kidney injury, and 90.2% of all acute kidney injuries that required subsequent administration of dialysis, with a lead time of up to 48 h and a ratio of 2 false alerts for every true alert. In addition to predicting future acute kidney injury, our model provides confidence assessments and a list of the clinical features that are most salient to each prediction, alongside predicted future trajectories for clinically relevant blood tests. Although the recognition and prompt treatment of acute kidney injury is known to be challenging, our approach may offer opportunities for identifying patients at risk within a time window that enables early treatment.
早期预测病情恶化可能在支持医疗保健专业人员方面发挥重要作用,因为据估计,医院中有 11%的死亡病例是由于未能及时识别和治疗病情恶化的患者导致的。要实现这一目标,需要能够持续更新且准确的患者风险预测,并在个体层面上提供足够的上下文和足够的时间来采取行动。在这里,我们开发了一种深度学习方法,用于对患者未来的恶化风险进行连续预测,该方法基于最近从电子健康记录中建模不良事件的工作,并以急性肾损伤(一种常见且潜在威胁生命的疾病)为例。我们的模型是在一个包含 703782 名成年患者的大型纵向电子健康记录数据集上开发的,该数据集涵盖了各种临床环境,包括 172 个住院和 1062 个门诊站点。我们的模型预测了 55.8%的住院急性肾损伤病例,以及 90.2%需要后续进行透析治疗的急性肾损伤病例,其提前期长达 48 小时,每发出 2 次错误警报,就会有 1 次正确警报。除了预测未来的急性肾损伤外,我们的模型还提供了置信度评估以及对每个预测最相关的临床特征的列表,以及对临床相关血液测试的未来预测轨迹。虽然急性肾损伤的识别和及时治疗是众所周知的挑战,但我们的方法可能为在能够进行早期治疗的时间窗口内识别风险患者提供机会。
Public Health Ethics. 2025-8-22
NPJ Digit Med. 2018-5-8
Pac Symp Biocomput. 2019
Can J Kidney Health Dis. 2018-6-8
AMIA Annu Symp Proc. 2018-4-16
Lancet. 2018-3-17