Jurečka Petr, Zgarbová Marie, Černý Filip, Salomon Jan
Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic.
J Biomol Struct Dyn. 2024 Mar 14:1-11. doi: 10.1080/07391102.2024.2327539.
When DNA interacts with a protein, its structure often undergoes a significant conformational adaptation, usually involving a transition from B-DNA towards the A-DNA form. This is not a two-state, but rather a multistate transition. The A- and B- forms differ mainly in sugar pucker (north/south) and glycosidic torsion χ (/high-). The combination of A-like pucker and B-like χ (and ) represents the nature of the intermediate states between the pure A- and B- forms. Here we study how the A/B equilibrium and the A/B intermediate states at protein-DNA interfaces are modeled by current AMBER force fields. Eight diverse protein-DNA complexes and their naked (unbound) DNAs were simulated with OL15 and bsc1 force fields and an experimental combination OL15χ. We found that while the geometries of the A-like intermediate states agree well with the native X-ray geometries, their populations (stabilities) are significantly underestimated. Different force fields predict different propensities for A-like states growing in the order OL15 < bsc1 < OL15, yet all underestimate A-like form populations. Interestingly, the force fields seem to predict the correct sequence-dependent A-form propensity, as they predict larger populations of the A-like form in unbound DNA in those steps that acquire A-like conformations in protein-DNA complexes. The instability of A-like geometries in current force fields significantly alters the geometry of simulated protein-DNA complexes and destabilizes the binding motif, suggesting that refinement is required to improve description of protein-DNA interactions in AMBER force fields.
当DNA与蛋白质相互作用时,其结构通常会发生显著的构象适应,通常涉及从B-DNA向A-DNA形式的转变。这不是一个双态转变,而是一个多态转变。A-和B-形式的主要区别在于糖的折叠(北/南)和糖苷扭转χ(/高-)。类似A的折叠和类似B的χ(和)的组合代表了纯A-和B-形式之间中间状态的性质。在这里,我们研究了当前的AMBER力场如何对蛋白质-DNA界面处的A/B平衡和A/B中间状态进行建模。使用OL15和bsc1力场以及实验组合OL15χ对八个不同的蛋白质-DNA复合物及其裸露(未结合)的DNA进行了模拟。我们发现,虽然类似A的中间状态的几何结构与天然X射线几何结构非常吻合,但其丰度(稳定性)被显著低估。不同的力场预测类似A状态的生长倾向不同,顺序为OL15 < bsc1 < OL15χ,但所有力场都低估了类似A形式的丰度。有趣的是,力场似乎预测了正确的序列依赖性A形式倾向,因为它们预测在蛋白质-DNA复合物中获得类似A构象的那些步骤中,未结合DNA中类似A形式的丰度更大。当前力场中类似A几何结构的不稳定性显著改变了模拟的蛋白质-DNA复合物的几何结构,并使结合基序不稳定,这表明需要进行改进以改善AMBER力场中对蛋白质-DNA相互作用的描述。