Suppr超能文献

蛋白质 - DNA 结合中的多态 B 到 A 转变——当前的 AMBER 力场对其描述得如何?

Multistate B- to A- transition in protein-DNA Binding - How well is it described by current AMBER force fields?

作者信息

Jurečka Petr, Zgarbová Marie, Černý Filip, Salomon Jan

机构信息

Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic.

出版信息

J Biomol Struct Dyn. 2024 Mar 14:1-11. doi: 10.1080/07391102.2024.2327539.

Abstract

When DNA interacts with a protein, its structure often undergoes a significant conformational adaptation, usually involving a transition from B-DNA towards the A-DNA form. This is not a two-state, but rather a multistate transition. The A- and B- forms differ mainly in sugar pucker (north/south) and glycosidic torsion χ (/high-). The combination of A-like pucker and B-like χ (and ) represents the nature of the intermediate states between the pure A- and B- forms. Here we study how the A/B equilibrium and the A/B intermediate states at protein-DNA interfaces are modeled by current AMBER force fields. Eight diverse protein-DNA complexes and their naked (unbound) DNAs were simulated with OL15 and bsc1 force fields and an experimental combination OL15χ. We found that while the geometries of the A-like intermediate states agree well with the native X-ray geometries, their populations (stabilities) are significantly underestimated. Different force fields predict different propensities for A-like states growing in the order OL15 < bsc1 < OL15, yet all underestimate A-like form populations. Interestingly, the force fields seem to predict the correct sequence-dependent A-form propensity, as they predict larger populations of the A-like form in unbound DNA in those steps that acquire A-like conformations in protein-DNA complexes. The instability of A-like geometries in current force fields significantly alters the geometry of simulated protein-DNA complexes and destabilizes the binding motif, suggesting that refinement is required to improve description of protein-DNA interactions in AMBER force fields.

摘要

当DNA与蛋白质相互作用时,其结构通常会发生显著的构象适应,通常涉及从B-DNA向A-DNA形式的转变。这不是一个双态转变,而是一个多态转变。A-和B-形式的主要区别在于糖的折叠(北/南)和糖苷扭转χ(/高-)。类似A的折叠和类似B的χ(和)的组合代表了纯A-和B-形式之间中间状态的性质。在这里,我们研究了当前的AMBER力场如何对蛋白质-DNA界面处的A/B平衡和A/B中间状态进行建模。使用OL15和bsc1力场以及实验组合OL15χ对八个不同的蛋白质-DNA复合物及其裸露(未结合)的DNA进行了模拟。我们发现,虽然类似A的中间状态的几何结构与天然X射线几何结构非常吻合,但其丰度(稳定性)被显著低估。不同的力场预测类似A状态的生长倾向不同,顺序为OL15 < bsc1 < OL15χ,但所有力场都低估了类似A形式的丰度。有趣的是,力场似乎预测了正确的序列依赖性A形式倾向,因为它们预测在蛋白质-DNA复合物中获得类似A构象的那些步骤中,未结合DNA中类似A形式的丰度更大。当前力场中类似A几何结构的不稳定性显著改变了模拟的蛋白质-DNA复合物的几何结构,并使结合基序不稳定,这表明需要进行改进以改善AMBER力场中对蛋白质-DNA相互作用的描述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验