Suppr超能文献

利用单细胞基因组和转录组测序数据对克隆结构进行联合推断。

Joint inference of clonal structure using single-cell genome and transcriptome sequencing data.

作者信息

Bai Xiangqi, Duren Zhana, Wan Lin, Xia Li C

机构信息

Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.

Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA.

出版信息

NAR Genom Bioinform. 2024 Feb 13;6(1):lqae017. doi: 10.1093/nargab/lqae017. eCollection 2024 Mar.

Abstract

Latest advancements in the high-throughput single-cell genome (scDNA) and transcriptome (scRNA) sequencing technologies enabled cell-resolved investigation of tissue clones. However, it remains challenging to cluster and couple single cells for heterogeneous scRNA and scDNA data generated from the same specimen. In this study, we present a computational framework called CCNMF, which employs a novel Coupled-Clone Non-negative Matrix Factorization technique to jointly infer clonal structure for matched scDNA and scRNA data. CCNMF couples multi-omics single cells by linking copy number and gene expression profiles through their general concordance. It successfully resolved the underlying coexisting clones with high correlations between the clonal genome and transcriptome from the same specimen. We validated that CCNMF can achieve high accuracy and robustness using both simulated benchmarks and real-world applications, including an ovarian cancer cell lines mixture, a gastric cancer cell line, and a primary gastric cancer. In summary, CCNMF provides a powerful tool for integrating multi-omics single-cell data, enabling simultaneous resolution of genomic and transcriptomic clonal architecture. This computational framework facilitates the understanding of how cellular gene expression changes in conjunction with clonal genome alternations, shedding light on the cellular genomic difference of subclones that contributes to tumor evolution.

摘要

高通量单细胞基因组(scDNA)和转录组(scRNA)测序技术的最新进展使得能够对组织克隆进行细胞分辨研究。然而,对于从同一标本产生的异质scRNA和scDNA数据,对单细胞进行聚类和配对仍然具有挑战性。在本研究中,我们提出了一个名为CCNMF的计算框架,该框架采用了一种新颖的耦合克隆非负矩阵分解技术,以联合推断匹配的scDNA和scRNA数据的克隆结构。CCNMF通过拷贝数和基因表达谱之间的总体一致性将多组学单细胞耦合起来。它成功地解析了来自同一标本的克隆基因组和转录组之间具有高度相关性的潜在共存克隆。我们通过模拟基准测试和实际应用(包括卵巢癌细胞系混合物、胃癌细胞系和原发性胃癌)验证了CCNMF能够实现高精度和鲁棒性。总之,CCNMF为整合多组学单细胞数据提供了一个强大的工具,能够同时解析基因组和转录组的克隆结构。这个计算框架有助于理解细胞基因表达如何与克隆基因组变化协同变化,揭示了有助于肿瘤进化的亚克隆的细胞基因组差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af39/10939367/3b618ff36a3d/lqae017fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验