Suppr超能文献

构建基于机器学习的紧急医疗服务救护车调度分诊模型。

Building a Machine Learning-based Ambulance Dispatch Triage Model for Emergency Medical Services.

作者信息

Wang Han, Ng Qin Xiang, Arulanandam Shalini, Tan Colin, Ong Marcus E H, Feng Mengling

机构信息

Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore.

Singapore Civil Defence Force, Singapore.

出版信息

Health Data Sci. 2023 Mar 15;3:0008. doi: 10.34133/hds.0008. eCollection 2023.

Abstract

BACKGROUND

In charge of dispatching the ambulances, Emergency Medical Services (EMS) call center specialists often have difficulty deciding the acuity of a case given the information they can gather within a limited time. Although there are protocols to guide their decision-making, observed performance can still lack sensitivity and specificity. Machine learning models have been known to capture complex relationships that are subtle, and well-trained data models can yield accurate predictions in a split of a second.

METHODS

In this study, we proposed a proof-of-concept approach to construct a machine learning model to better predict the acuity of emergency cases. We used more than 360,000 structured emergency call center records of cases received by the national emergency call center in Singapore from 2018 to 2020. Features were created using call records, and multiple machine learning models were trained.

RESULTS

A Random Forest model achieved the best performance, reducing the over-triage rate by an absolute margin of 15% compared to the call center specialists while maintaining a similar level of under-triage rate.

CONCLUSIONS

The model has the potential to be deployed as a decision support tool for dispatchers alongside current protocols to optimize ambulance dispatch triage and the utilization of emergency ambulance resources.

摘要

背景

在负责调度救护车时,紧急医疗服务(EMS)呼叫中心的专家常常难以根据在有限时间内收集到的信息来判定病例的紧急程度。尽管有相关规程来指导他们的决策,但实际表现仍可能缺乏敏感性和特异性。机器学习模型已知能够捕捉微妙的复杂关系,并且训练有素的数据模型能够在瞬间做出准确预测。

方法

在本研究中,我们提出了一种概念验证方法来构建一个机器学习模型,以更好地预测紧急病例的紧急程度。我们使用了新加坡国家紧急呼叫中心在2018年至2020年期间收到的超过36万份结构化紧急呼叫中心病例记录。利用呼叫记录创建特征,并训练了多个机器学习模型。

结果

一个随机森林模型表现最佳,与呼叫中心专家相比,将过度分诊率绝对降低了15%,同时保持了相似的低分诊率水平。

结论

该模型有潜力与当前规程一起作为调度员的决策支持工具进行部署,以优化救护车调度分诊和紧急救护车资源的利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c20/10880163/8f1199ce21a9/hds.0008.fig.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验