Suppr超能文献

基于机器学习的主动-被动上肢外骨骼机器人评估:人体在环实验研究

Evaluation of a machine-learning-driven active-passive upper-limb exoskeleton robot: Experimental human-in-the-loop study.

作者信息

Nasr Ali, Hunter Jason, Dickerson Clark R, McPhee John

机构信息

Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

出版信息

Wearable Technol. 2023 May 15;4:e13. doi: 10.1017/wtc.2023.9. eCollection 2023.

Abstract

Evaluating exoskeleton actuation methods and designing an effective controller for these exoskeletons are both challenging and time-consuming tasks. This is largely due to the complicated human-robot interactions, the selection of sensors and actuators, electrical/command connection issues, and communication delays. In this research, a test framework for evaluating a new active-passive shoulder exoskeleton was developed, and a surface electromyography (sEMG)-based human-robot cooperative control method was created to execute the wearer's movement intentions. The hierarchical control used sEMG-based intention estimation, mid-level strength regulation, and low-level actuator control. It was then applied to shoulder joint elevation experiments to verify the exoskeleton controller's effectiveness. The active-passive assistance was compared with fully passive and fully active exoskeleton control using the following criteria: (1) post-test survey, (2) load tolerance duration, and (3) computed human torque, power, and metabolic energy expenditure using sEMG signals and inverse dynamic simulation. The experimental outcomes showed that active-passive exoskeletons required less muscular activation torque (50%) from the user and reduced fatigue duration indicators by a factor of 3, compared to fully passive ones.

摘要

评估外骨骼的驱动方法并为这些外骨骼设计有效的控制器,都是具有挑战性且耗时的任务。这主要是由于复杂的人机交互、传感器和执行器的选择、电气/指令连接问题以及通信延迟。在本研究中,开发了一个用于评估新型主动-被动肩部外骨骼的测试框架,并创建了一种基于表面肌电图(sEMG)的人机协作控制方法,以执行穿戴者的运动意图。分层控制采用基于sEMG的意图估计、中级力量调节和低级执行器控制。然后将其应用于肩关节抬高实验,以验证外骨骼控制器的有效性。使用以下标准将主动-被动辅助与完全被动和完全主动的外骨骼控制进行比较:(1)测试后调查,(2)负载耐受持续时间,以及(3)使用sEMG信号和逆动力学模拟计算的人体扭矩、功率和代谢能量消耗。实验结果表明,与完全被动的外骨骼相比,主动-被动外骨骼所需的使用者肌肉激活扭矩减少了50%,疲劳持续时间指标降低了三分之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42d8/10936398/5d06e3d5c1c4/S2631717623000099_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验