Suppr超能文献

MCSNet:基于通道协同的人体外骨骼与表面肌电图接口

MCSNet: Channel Synergy-Based Human-Exoskeleton Interface With Surface Electromyogram.

作者信息

Shi Kecheng, Huang Rui, Peng Zhinan, Mu Fengjun, Yang Xiao

机构信息

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China.

Center for Robotics, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Front Neurosci. 2021 Nov 17;15:704603. doi: 10.3389/fnins.2021.704603. eCollection 2021.

Abstract

The human-robot interface (HRI) based on biological signals can realize the natural interaction between human and robot. It has been widely used in exoskeleton robots recently to help predict the wearer's movement. Surface electromyography (sEMG)-based HRI has mature applications on the exoskeleton. However, the sEMG signals of paraplegic patients' lower limbs are weak, which means that most HRI based on lower limb sEMG signals cannot be applied to the exoskeleton. Few studies have explored the possibility of using upper limb sEMG signals to predict lower limb movement. In addition, most HRIs do not consider the contribution and synergy of sEMG signal channels. This paper proposes a human-exoskeleton interface based on upper limb sEMG signals to predict lower limb movements of paraplegic patients. The interface constructs an channel synergy-based network (MCSNet) to extract the contribution and synergy of different feature channels. An sEMG data acquisition experiment is designed to verify the effectiveness of MCSNet. The experimental results show that our method has a good movement prediction performance in both within-subject and cross-subject situations, reaching an accuracy of 94.51 and 80.75%, respectively. Furthermore, feature visualization and model ablation analysis show that the features extracted by MCSNet are physiologically interpretable.

摘要

基于生物信号的人机接口(HRI)能够实现人与机器人之间的自然交互。近年来,它已广泛应用于外骨骼机器人,以帮助预测穿戴者的动作。基于表面肌电图(sEMG)的HRI在外骨骼方面已有成熟应用。然而,截瘫患者下肢的sEMG信号较弱,这意味着大多数基于下肢sEMG信号的HRI无法应用于外骨骼。很少有研究探索利用上肢sEMG信号预测下肢动作的可能性。此外,大多数HRI没有考虑sEMG信号通道的贡献和协同作用。本文提出了一种基于上肢sEMG信号的人机外骨骼接口,用于预测截瘫患者的下肢动作。该接口构建了一个基于通道协同的网络(MCSNet),以提取不同特征通道的贡献和协同作用。设计了一个sEMG数据采集实验来验证MCSNet的有效性。实验结果表明,我们的方法在个体内和个体间情况下均具有良好的动作预测性能,准确率分别达到94.51%和80.75%。此外,特征可视化和模型消融分析表明,MCSNet提取的特征在生理上是可解释的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cd0/8636050/ed1c41f37d08/fnins-15-704603-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验