Hong Tao, Qin Bingchao, Qin Yongxin, Bai Shulin, Wang Ziyuan, Cao Qian, Ge Zhen-Hua, Zhang Xiao, Gao Xiang, Zhao Li-Dong
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
J Am Chem Soc. 2024 Mar 27;146(12):8727-8736. doi: 10.1021/jacs.4c01525. Epub 2024 Mar 15.
The practical application of thermoelectric devices requires both high-performance n-type and p-type materials of the same system to avoid possible mismatches and improve device reliability. Currently, environmentally friendly SnTe thermoelectrics have witnessed extensive efforts to develop promising p-type transport, making it rather urgent to investigate the n-type counterparts with comparable performance. Herein, we develop a stepwise optimization strategy for improving the transport properties of n-type SnTe. First, we improve the n-type dopability of SnTe by PbSe alloying to narrow the band gap and obtain n-type transport in SnTe with halogen doping over the whole temperature range. Then, we introduce additional Pb atoms to compensate for the cationic vacancies in the SnTe-PbSe matrix, further enhancing the electron carrier concentration and electrical performance. Resultantly, the high-ranged thermoelectric performance of n-type SnTe is substantially optimized, achieving a peak of ∼0.75 at 573 K with a high average () exceeding 0.5 from 300 to 823 K in the (SnTeI)(PbSe) sample. Moreover, based on the performance optimization on n-type SnTe, for the first time, we fabricate an all-SnTe-based seven-pair thermoelectric device. This device can produce a maximum output power of ∼0.2 W and a conversion efficiency of ∼2.7% under a temperature difference of 350 K, demonstrating an important breakthrough for all-SnTe-based thermoelectric devices. Our research further illustrates the effectiveness and application potential of the environmentally friendly SnTe thermoelectrics for mid-temperature power generation.
热电装置的实际应用需要同一体系中高性能的n型和p型材料,以避免可能出现的不匹配并提高装置的可靠性。目前,环境友好型的SnTe热电材料在开发有前景的p型输运方面已经付出了巨大努力,因此研究具有可比性能的n型材料变得相当紧迫。在此,我们开发了一种逐步优化策略来改善n型SnTe的输运性能。首先,我们通过PbSe合金化提高SnTe的n型掺杂能力以缩小带隙,并通过卤族元素掺杂在整个温度范围内实现SnTe的n型输运。然后,我们引入额外的Pb原子来补偿SnTe-PbSe基体中的阳离子空位,进一步提高电子载流子浓度和电学性能。结果,n型SnTe的高范围热电性能得到了显著优化,在(SnTeI)(PbSe)样品中,573 K时达到约0.75的峰值,在300至823 K范围内具有超过0.5的高平均 () 。此外,基于对n型SnTe的性能优化,我们首次制造了一种全SnTe基的七对热电装置。该装置在350 K的温差下可产生约0.2 W的最大输出功率和约2.7%的转换效率,这表明全SnTe基热电装置取得了重要突破。我们的研究进一步说明了环境友好型SnTe热电材料在中温发电方面的有效性和应用潜力。