Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
High Alt Med Biol. 2024 Jun;25(2):122-128. doi: 10.1089/ham.2023.0122. Epub 2024 Mar 15.
Norberto, Matheus S., João Victor G. Torini, Matheus S. Firmino, and Marcelo Papoti. Validation of air storage system for hypoxia exposure during exercise. . 00:000-000, 2024.-Considering the importance of optimizing normobaric hypoxia exposure (i.e., higher delivery capacity), the current study aims to validate a hypoxic air storage system. The study has a cross-over, one-blind randomized design. The air storage is composed of a piping system that directs hypoxic air from a hypoxia generator into nylon bags. Sixteen men (age, 25.4 ± 4.8 years; height, 174.9 ± 9.4 cm; weight, 77.1 ± 17.2 kg) performed three incremental treadmill tests until exhaustion on different days. For test-retest, the subjects repeated two tests in similar hypoxia conditions (H1 and H2; fraction of inspired O [FO] = ∼0.13; reliability analysis), and one time in normoxia (FO = ∼0.20; condition comparison). Subjects' performance, blood lactate concentration ([La]), arterial oxygen saturation (SpO), oxygen consumption (VO), heart rate (HR), and several respiratory-derived variables were evaluated. A comparison was made between the rest, moderate intensity, and exhaustion stages. All variables were compared using the Friedman test with Durbin-Conover ( < 0.05). The hypoxia test-retest showed no statistical differences for any variable. Time analysis showed similar behavior for SpO, HR, and cardiorespiratory variables ( < 0.01) for both conditions. The mean FO at rest and during the incremental treadmill test was higher for normoxia (20.6 ± 0.2%) than for H1 (13.8 ± 0.8%) and H2 (13.7 ± 0.3%) ( < 0.001). The VO response was higher in normoxia than during hypoxia exposure at moderate intensity (Normoxia = 43.1 ± 8.1; H1 = 38.7 ± 5.7; H2 = 35.8 ± 8.8 ml.kg.min) and at the exhaustion stage (Normoxia = 52.7 ± 12.5; H1 = 41.9 ± 8.8; H2 = 40.5 ± 8.9 ml.kg.min) ( < 0.01). SpO and HR showed excellent intraclass correlation coefficient (ICC) during all moments, whereas VO, SpO, ratio between ventilation and CO production (V/V), ratio between oxygen consumption and ventilation (V/V), and HR showed moderate or good ICC and coefficient of variation <9% during hypoxia test-retest exercises. Thus, the air storage system showed validity for its application and reliability in the measurements associated.
诺贝托、马泰乌斯·S、若昂·维克托·G·托里尼、马泰乌斯·S·菲尔米诺和马塞洛·帕波蒂。运动期间缺氧暴露用空气存储系统的验证。 ,2024 年。- 考虑到优化常压缺氧暴露(即更高的输送能力)的重要性,本研究旨在验证一种缺氧空气存储系统。该研究采用交叉、单盲随机设计。空气存储由一个管道系统组成,该系统将缺氧发生器中的缺氧空气引导到尼龙袋中。16 名男性(年龄 25.4±4.8 岁;身高 174.9±9.4cm;体重 77.1±17.2kg)在不同天进行了三次递增式跑步机测试,直到力竭。对于测试-再测试,受试者在相似的缺氧条件下重复了两次测试(H1 和 H2;吸入的 O 分数[FO]≈0.13;可靠性分析),一次在常氧条件下(FO≈0.20;条件比较)。评估了受试者的表现、血乳酸浓度([La])、动脉血氧饱和度(SpO)、耗氧量(VO)、心率(HR)和几个呼吸衍生变量。在休息、中等强度和力竭阶段之间进行了比较。使用 Friedman 检验与 Durbin-Conover 进行了所有变量的比较( < 0.05)。缺氧测试-再测试对于任何变量都没有统计学差异。时间分析表明,两种条件下 SpO、HR 和心肺变量的行为相似( < 0.01)。休息时和递增式跑步机测试时的平均 FO ,常氧(20.6±0.2%)高于 H1(13.8±0.8%)和 H2(13.7±0.3%)( < 0.001)。在中等强度和力竭阶段,常氧时的 VO 反应高于缺氧暴露时(常氧=43.1±8.1;H1=38.7±5.7;H2=35.8±8.8 ml.kg.min)( < 0.01)。SpO 和 HR 在所有时刻都表现出极好的组内相关系数(ICC),而 VO、SpO、通气与 CO 产生的比值(V/V)、耗氧量与通气的比值(V/V)和 HR 在缺氧测试-再测试运动期间表现出中等或良好的 ICC 和变异系数 <9%。因此,空气存储系统在其应用和相关测量的可靠性方面显示出有效性。