Suppr超能文献

解析低密度脂蛋白相关基因在肺腺癌中的作用:对肿瘤微环境和临床预后的见解

Unraveling the role of low-density lipoprotein-related genes in lung adenocarcinoma: Insights into tumor microenvironment and clinical prognosis.

作者信息

Zhang Pengpeng, Wu Xinyi, Wang Dingli, Zhang Mengzhe, Zhang Bin, Zhang Zhenfa

机构信息

Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

出版信息

Environ Toxicol. 2024 Oct;39(10):4479-4495. doi: 10.1002/tox.24230. Epub 2024 Mar 15.

Abstract

BACKGROUND

The hypothesized link between low-density lipoprotein (LDL) and oncogenesis has garnered significant interest, yet its explicit impact on lung adenocarcinoma (LUAD) remains to be elucidated. This investigation aims to demystify the function of LDL-related genes (LRGs) within LUAD, endeavoring to shed light on the complex interplay between LDL and carcinogenesis.

METHODS

Leveraging single-cell transcriptomics, we examined the role of LRGs within the tumor microenvironment (TME). The expression patterns of LRGs across diverse cellular phenotypes were delineated using an array of computational methodologies, including AUCell, UCell, singscore, ssGSEA, and AddModuleScore. CellChat facilitated the exploration of distinct cellular interactions within LDL_low and LDL_high groups. The findmarker utility, coupled with Pearson correlation analysis, facilitated the identification of pivotal genes correlated with LDL indices. An integrative approach to transcriptomic data analysis was adopted, utilizing a machine learning framework to devise an LDL-associated signature (LAS). This enabled the delineation of genomic disparities, pathway enrichments, immune cell dynamics, and pharmacological sensitivities between LAS stratifications.

RESULTS

Enhanced cellular crosstalk was observed in the LDL_high group, with the CoxBoost+Ridge algorithm achieving the apex c-index for LAS formulation. Benchmarking against 144 extant LUAD models underscored the superior prognostic acuity of LAS. Elevated LAS indices were synonymous with adverse outcomes, diminished immune surveillance, and an upsurge in pathways conducive to neoplastic proliferation. Notably, a pronounced susceptibility to paclitaxel and gemcitabine was discerned within the high-LAS cohort, delineating prospective therapeutic corridors.

CONCLUSION

This study elucidates the significance of LRGs within the TME and introduces an LAS for prognostication in LUAD patients. Our findings accentuate putative therapeutic targets and elucidate the clinical ramifications of LAS deployment.

摘要

背景

低密度脂蛋白(LDL)与肿瘤发生之间的假设联系已引起广泛关注,但其对肺腺癌(LUAD)的明确影响仍有待阐明。本研究旨在揭开LUAD中低密度脂蛋白相关基因(LRGs)的功能之谜,努力阐明LDL与致癌作用之间的复杂相互作用。

方法

利用单细胞转录组学,我们研究了LRGs在肿瘤微环境(TME)中的作用。使用一系列计算方法,包括AUCell、UCell、singscore、ssGSEA和AddModuleScore,描绘了LRGs在不同细胞表型中的表达模式。CellChat促进了对LDL_low和LDL_high组内不同细胞相互作用的探索。findmarker工具与Pearson相关分析相结合,有助于识别与LDL指标相关的关键基因。采用综合方法进行转录组数据分析,利用机器学习框架设计了一个LDL相关特征(LAS)。这使得能够描绘LAS分层之间的基因组差异、通路富集、免疫细胞动态和药物敏感性。

结果

在LDL_high组中观察到细胞间串扰增强,CoxBoost+Ridge算法在LAS制定中达到了最高的c指数。与144个现有的LUAD模型进行比较,突出了LAS卓越的预后敏锐性。LAS指数升高与不良预后、免疫监视减弱以及有利于肿瘤增殖的通路增加同义。值得注意的是,在高LAS队列中发现对紫杉醇和吉西他滨有明显的敏感性,描绘了潜在的治疗途径。

结论

本研究阐明了LRGs在TME中的重要性,并引入了一种LAS用于LUAD患者的预后评估。我们的发现强调了潜在的治疗靶点,并阐明了LAS应用的临床意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验