Hsu Tim, Sadigh Babak, Bulatov Vasily, Zhou Fei
Lawrence Livermore National Laboratory, Livermore, California 94551, United States.
J Chem Theory Comput. 2024 Mar 26;20(6):2335-2348. doi: 10.1021/acs.jctc.3c01361. Epub 2024 Mar 15.
We propose score dynamics (SD), a general framework for learning accelerated evolution operators with large timesteps from molecular dynamics (MD) simulations. SD is centered around scores or derivatives of the transition log-probability with respect to the dynamical degrees of freedom. The latter play the same role as force fields in MD but are used in denoising diffusion probability models to generate discrete transitions of the dynamical variables in an SD time step, which can be orders of magnitude larger than a typical MD time step. In this work, we construct graph neural network-based SD models of realistic molecular systems that are evolved with 10 ps timesteps. We demonstrate the efficacy of SD with case studies of the alanine dipeptide and short alkanes in aqueous solution. Both equilibrium predictions derived from the stationary distributions of the conditional probability and kinetic predictions for the transition rates and transition paths are in good agreement with MD. Our current SD implementation is about 2 orders of magnitude faster than the MD counterpart for the systems studied in this work. Open challenges and possible future remedies to improve SD are also discussed.
我们提出了分数动力学(SD),这是一个用于从分子动力学(MD)模拟中学习具有大时间步长的加速演化算符的通用框架。SD以分数或关于动力学自由度的跃迁对数概率的导数为核心。后者在MD中与力场起着相同的作用,但在去噪扩散概率模型中用于在一个SD时间步长内生成动力学变量的离散跃迁,该时间步长可能比典型的MD时间步长大几个数量级。在这项工作中,我们构建了基于图神经网络的真实分子系统的SD模型,这些模型以10皮秒的时间步长演化。我们通过丙氨酸二肽和短链烷烃在水溶液中的案例研究证明了SD的有效性。从条件概率的平稳分布得出的平衡预测以及跃迁速率和跃迁路径的动力学预测都与MD结果高度吻合。对于本工作中研究的系统,我们当前的SD实现比MD实现快约2个数量级。我们还讨论了改进SD的开放挑战和可能的未来补救措施。