Suppr超能文献

建立和验证列线图预测非转移性膀胱癌患者总生存和癌症特异性生存:一项大型基于人群的队列研究和外部验证。

Establishment and validation of nomograms to predict the overall survival and cancer-specific survival for non-metastatic bladder cancer patients: A large population-based cohort study and external validation.

机构信息

Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.

Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China.

出版信息

Medicine (Baltimore). 2024 Mar 15;103(11):e37492. doi: 10.1097/MD.0000000000037492.

Abstract

This study aimed to develop nomograms to accurately predict the overall survival (OS) and cancer-specific survival (CSS) of non-metastatic bladder cancer (BC) patients. Clinicopathological information of 260,412 non-metastatic BC patients was downloaded from the Surveillance, Epidemiology, and End Results (SEER) database from 2000 to 2020. LASSO method and Cox proportional hazard regression analysis were utilized to discover the independent risk factors, which were used to develop nomograms. The accuracy and discrimination of models were tested by the consistency index (C-index), the area under the subject operating characteristic curve (AUC) and the calibration curve. Decision curve analysis (DCA) was used to test the clinical value of nomograms compared with the TNM staging system. Nomograms predicting OS and CSS were constructed after identifying independent prognostic factors. The C-index of the training, internal validation and external validation cohort for OS was 0.722 (95%CI: 0.720-0.724), 0.723 (95%CI: 0.721-0.725) and 0.744 (95%CI: 0.677-0.811). The C-index of the training, internal validation and external validation cohort for CSS was 0.794 (95%CI: 0.792-0.796), 0.793 (95%CI: 0.789-0.797) and 0.879 (95%CI: 0.814-0.944). The AUC and the calibration curves showed good accuracy and discriminability. The DCA showed favorable clinical potential value of nomograms. Kaplan-Meier curve and log-rank test uncovered statistically significance survival difference between high- and low-risk groups. We developed nomograms to predict OS and CSS for non-metastatic BC patients. The models have been internally and externally validated with accuracy and discrimination and can assist clinicians to make better clinical decisions.

摘要

本研究旨在开发列线图,以准确预测非转移性膀胱癌(BC)患者的总生存期(OS)和癌症特异性生存期(CSS)。从 2000 年至 2020 年,从监测、流行病学和最终结果(SEER)数据库下载了 260412 名非转移性 BC 患者的临床病理信息。利用 LASSO 方法和 Cox 比例风险回归分析发现独立的危险因素,这些危险因素被用于开发列线图。通过一致性指数(C 指数)、受试者工作特征曲线(AUC)下面积和校准曲线来测试模型的准确性和区分度。决策曲线分析(DCA)用于测试与 TNM 分期系统相比,列线图的临床价值。在确定独立的预后因素后,构建了预测 OS 和 CSS 的列线图。OS 的训练、内部验证和外部验证队列的 C 指数分别为 0.722(95%CI:0.720-0.724)、0.723(95%CI:0.721-0.725)和 0.744(95%CI:0.677-0.811)。CSS 的训练、内部验证和外部验证队列的 C 指数分别为 0.794(95%CI:0.792-0.796)、0.793(95%CI:0.789-0.797)和 0.879(95%CI:0.814-0.944)。AUC 和校准曲线显示出良好的准确性和区分度。DCA 显示出列线图具有良好的临床潜在价值。Kaplan-Meier 曲线和对数秩检验揭示了高风险组和低风险组之间具有统计学意义的生存差异。我们开发了用于预测非转移性 BC 患者 OS 和 CSS 的列线图。该模型经过内部和外部验证,具有准确性和区分度,可以帮助临床医生做出更好的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3568/10939645/5b8fdbdcc813/medi-103-e37492-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验