Suppr超能文献

五分钟膝关节 MRI:基于 AI 的压缩感知超分辨率重建方法。一项针对健康志愿者的验证研究。

Five-minute knee MRI: An AI-based super resolution reconstruction approach for compressed sensing. A validation study on healthy volunteers.

机构信息

University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany.

University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany; Philips GmbH Market DACH, Hamburg, Germany.

出版信息

Eur J Radiol. 2024 Jun;175:111418. doi: 10.1016/j.ejrad.2024.111418. Epub 2024 Mar 9.

Abstract

PURPOSE

To investigate the potential of combining Compressed Sensing (CS) and a newly developed AI-based super resolution reconstruction prototype consisting of a series of convolutional neural networks (CNN) for a complete five-minute 2D knee MRI protocol.

METHODS

In this prospective study, 20 volunteers were examined using a 3T-MRI-scanner (Ingenia Elition X, Philips). Similar to clinical practice, the protocol consists of a fat-saturated 2D-proton-density-sequence in coronal, sagittal and transversal orientation as well as a sagittal T1-weighted sequence. The sequences were acquired with two different resolutions (standard and low resolution) and the raw data reconstructed with two different reconstruction algorithms: a conventional Compressed SENSE (CS) and a new CNN-based algorithm for denoising and subsequently to interpolate and therewith increase the sharpness of the image (CS-SuperRes). Subjective image quality was evaluated by two blinded radiologists reviewing 8 criteria on a 5-point Likert scale and signal-to-noise ratio calculated as an objective parameter.

RESULTS

The protocol reconstructed with CS-SuperRes received higher ratings than the time-equivalent CS reconstructions, statistically significant especially for low resolution acquisitions (e.g., overall image impression: 4.3 ± 0.4 vs. 3.4 ± 0.4, p < 0.05). CS-SuperRes reconstructions for the low resolution acquisition were comparable to traditional CS reconstructions with standard resolution for all parameters, achieving a scan time reduction from 11:01 min to 4:46 min (57 %) for the complete protocol (e.g. overall image impression: 4.3 ± 0.4 vs. 4.0 ± 0.5, p < 0.05).

CONCLUSION

The newly-developed AI-based reconstruction algorithm CS-SuperRes allows to reduce scan time by 57% while maintaining unchanged image quality compared to the conventional CS reconstruction.

摘要

目的

研究将压缩感知(CS)与新开发的基于人工智能的超分辨率重建原型相结合,用于完整的五分钟 2D 膝关节 MRI 方案的潜力。

方法

在这项前瞻性研究中,20 名志愿者使用 3T-MRI 扫描仪(Ingenia Elition X,Philips)进行检查。与临床实践类似,该方案包括冠状位、矢状位和横断位的脂肪饱和 2D 质子密度序列以及矢状位 T1 加权序列。这些序列分别以两种不同的分辨率(标准和低分辨率)采集,并使用两种不同的重建算法(传统的压缩感知 CS 和新的基于 CNN 的去噪和随后插值以提高图像清晰度的算法 CS-SuperRes)进行重建。两位盲法放射科医生使用 5 分制评价 8 项标准评估主观图像质量,并计算作为客观参数的信噪比。

结果

CS-SuperRes 重建的方案获得的评分高于等效时间的 CS 重建,尤其是低分辨率采集时具有统计学意义(例如,整体图像印象:4.3±0.4 与 3.4±0.4,p<0.05)。对于低分辨率采集,CS-SuperRes 重建在所有参数上与标准分辨率的传统 CS 重建相当,从而使整个方案的扫描时间从 11:01 分钟减少到 4:46 分钟(57%)(例如,整体图像印象:4.3±0.4 与 4.0±0.5,p<0.05)。

结论

与传统的 CS 重建相比,新开发的基于人工智能的重建算法 CS-SuperRes 允许在保持图像质量不变的情况下将扫描时间缩短 57%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验