Suppr超能文献

基于深度学习的压缩感知和超分辨率重建对高分辨率垂体动态对比增强磁共振成像的评估

Evaluation of high-resolution pituitary dynamic contrast-enhanced MRI using deep learning-based compressed sensing and super-resolution reconstruction.

作者信息

Zhang Meng, Xia Chunchao, Tang Jing, Yao Li, Hu Na, Li Jiaqi, Peng Wanlin, Hu Sixian, Ye Zheng, Zhang Xiaoyong, Huang Jin, Li Zhenlin

机构信息

Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.

Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Eur Radiol. 2025 Apr 13. doi: 10.1007/s00330-025-11574-5.

Abstract

OBJECTIVE

This study aims to assess diagnostic performance of high-resolution dynamic contrast-enhanced (DCE) MRI with deep learning-based compressed sensing and super-resolution (DLCS-SR) reconstruction for identifying microadenomas.

MATERIALS AND METHODS

This prospective study included 126 participants with suspected pituitary microadenomas who underwent DCE MRI between June 2023 and January 2024. Four image groups were derived from single-scan DCE MRI, which included 1.5-mm slice thickness images using DLCS-SR (1.5-mm DLCS-SR images), 1.5-mm slice thickness images with deep learning-based compressed sensing reconstruction (1.5-mm DLCS images), 1.5-mm routine images, and 3-mm slice thickness images using DLCS-SR (3-mm DLCS-SR images). Diagnostic criteria were established by incorporating laboratory findings, clinical symptoms, medical histories, previous imaging, and certain pathologic reports. Two readers assessed the diagnostic performance in identifying pituitary abnormalities and microadenomas. Diagnostic agreements were assessed using κ statistics, and intergroup comparisons for microadenoma detection were performed using the DeLong and McNemar tests.

RESULTS

The 1.5-mm DLCS-SR images (κ = 0.746-0.848) exhibited superior diagnostic agreement, outperforming 1.5-mm DLCS (κ = 0.585-0.687), 1.5-mm routine (κ = 0.449-0.487), and 3-mm DLCS-SR images (κ = 0.347-0.369) (p < 0.001 for all). Additionally, the performance of 1.5-mm DLCS-SR images in identifying microadenomas [area under the receiver operating characteristic curve (AUC), 0.89-0.94] surpassed that of 1.5-mm DLCS (AUC, 0.83-0.87; p = 0.042 and 0.011, respectively), 1.5-mm routine (AUC, 0.76-0.78; p < 0.001), and 3-mm DLCS-SR images (AUC, 0.72-0.74; p < 0.001).

CONCLUSION

The findings revealed superior diagnostic performance of 1.5-mm DLCS-SR images in identifying pituitary abnormalities and microadenomas, indicating the clinical-potential of high-resolution DCE MRI.

KEY POINTS

Question What strategies can overcome the resolution limitations of conventional dynamic contrast-enhanced (DCE) MRI, and which contribute to a high false-negative rate in diagnosing pituitary microadenomas? Findings Deep learning-based compressed sensing and super-resolution reconstruction applied to DCE MRI achieved high resolution while improving image quality and diagnostic efficacy. Clinical relevance DCE MRI with a 1.5-mm slice thickness and high in-plane resolution, utilizing deep learning-based compressed sensing and super-resolution reconstruction, significantly enhances diagnostic accuracy for pituitary abnormalities and microadenomas, enabling timely and effective patient management.

摘要

目的

本研究旨在评估基于深度学习的压缩感知和超分辨率(DLCS-SR)重建的高分辨率动态对比增强(DCE)MRI对微腺瘤的诊断性能。

材料与方法

这项前瞻性研究纳入了126例疑似垂体微腺瘤的参与者,他们于2023年6月至2024年1月期间接受了DCE MRI检查。从单次扫描的DCE MRI中获得了四组图像,包括使用DLCS-SR的1.5毫米层厚图像(1.5毫米DLCS-SR图像)、基于深度学习的压缩感知重建的1.5毫米层厚图像(1.5毫米DLCS图像)、1.5毫米常规图像以及使用DLCS-SR的3毫米层厚图像(3毫米DLCS-SR图像)。通过结合实验室检查结果、临床症状、病史、既往影像学检查以及某些病理报告来制定诊断标准。两名阅片者评估识别垂体异常和微腺瘤的诊断性能。使用κ统计量评估诊断一致性,并使用德龙检验和麦克尼马尔检验进行微腺瘤检测的组间比较。

结果

1.5毫米DLCS-SR图像(κ = 0.746 - 0.848)表现出更高的诊断一致性,优于1.5毫米DLCS图像(κ = 0.585 - 0.687)、1.5毫米常规图像(κ = 0.449 - 0.487)和3毫米DLCS-SR图像(κ = 0.347 - 0.369)(所有p < 0.001)。此外,1.5毫米DLCS-SR图像在识别微腺瘤方面的性能[受试者操作特征曲线下面积(AUC),0.89 - 0.94]超过了1.5毫米DLCS图像(AUC,0.83 - 0.87;p分别为0.042和0.011)、1.5毫米常规图像(AUC,0.76 - 0.78;p < 0.001)和3毫米DLCS-SR图像(AUC,0.72 - 0.74;p < 0.001)。

结论

研究结果显示1.5毫米DLCS-SR图像在识别垂体异常和微腺瘤方面具有卓越的诊断性能,表明高分辨率DCE MRI具有临床应用潜力。

关键点

问题 哪些策略可以克服传统动态对比增强(DCE)MRI的分辨率限制,且有助于解决垂体微腺瘤诊断中高假阴性率的问题?发现 将基于深度学习的压缩感知和超分辨率重建应用于DCE MRI可实现高分辨率,同时提高图像质量和诊断效能。临床意义 采用基于深度学习的压缩感知和超分辨率重建的1.5毫米层厚且具有高平面分辨率的DCE MRI,显著提高了垂体异常和微腺瘤的诊断准确性,有助于及时有效地管理患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验