Suppr超能文献

使用简单的子群荟萃分析评估对最坏情况发表偏倚的稳健性。

Assessing robustness to worst case publication bias using a simple subset meta-analysis.

机构信息

Quantitative Sciences Unit and Department of Pediatrics, Stanford University, Palo Alto, CA 94304, USA.

出版信息

BMJ. 2024 Mar 15;384:e076851. doi: 10.1136/bmj-2023-076851.

Abstract

This article discusses a simple method, known as a meta-analysis of non-affirmative studies, to assess how robust a meta-analysis is to publication bias that favors affirmative studies (studies with significant P values and point estimates in the desired direction) over non-affirmative studies (studies with non-significant P values or point estimates in the undesired direction). This method is a standard meta-analysis that includes only non-affirmative studies. The resulting meta-analytical estimate corrects for worst case publication bias, a hypothetical scenario in which affirmative studies are almost infinitely more likely to be published than non-affirmative studies. If this estimate remains in the same direction as the uncorrected estimate and is of clinically meaningful size, this suggests that the meta-analysis conclusions would not be overturned by any amount of publication bias favoring affirmative studies. Meta-analysis of non-affirmative studies complements an uncorrected meta-analysis and other publication bias analyses by accommodating small meta-analyses, non-normal effects, heterogeneous effects across studies, and additional forms of selective reporting (in particular, P-hacking).

摘要

本文讨论了一种简单的方法,称为非肯定性研究的荟萃分析,以评估荟萃分析对偏向肯定性研究(具有显著 P 值和期望方向的点估计的研究)而非肯定性研究(具有非显著 P 值或非期望方向的点估计的研究)的发表偏倚的稳健性如何。这种方法是一种标准的荟萃分析,仅包括非肯定性研究。由此产生的荟萃分析估计值纠正了最坏情况下的发表偏倚,这是一种假设情况,即肯定性研究几乎无限可能比非肯定性研究更容易发表。如果这个估计值与未校正的估计值保持一致,并且具有临床意义的大小,那么这表明荟萃分析的结论不会被任何偏向肯定性研究的发表偏倚所推翻。非肯定性研究的荟萃分析通过适应小型荟萃分析、非正态效应、研究间异质性效应以及其他形式的选择性报告(特别是 P 操纵),补充了未校正的荟萃分析和其他发表偏倚分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7b/10941077/5c76b54fb7f4/matm076851.f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验