Suppr超能文献

使用选择模型评估对发表偏倚的敏感性:教程及呼吁更常规地使用

Using selection models to assess sensitivity to publication bias: A tutorial and call for more routine use.

作者信息

Maier Maximilian, VanderWeele Tyler J, Mathur Maya B

机构信息

Department of Experimental Psychology University College London London UK.

Department of Psychology University of Amsterdam Amsterdam The Netherlands.

出版信息

Campbell Syst Rev. 2022 Jul 1;18(3):e1256. doi: 10.1002/cl2.1256. eCollection 2022 Sep.

Abstract

In meta-analyses, it is critical to assess the extent to which publication bias might have compromised the results. Classical methods based on the funnel plot, including Egger's test and Trim-and-Fill, have become the de facto default methods to do so, with a large majority of recent meta-analyses in top medical journals (85%) assessing for publication bias exclusively using these methods. However, these classical funnel plot methods have important limitations when used as the sole means of assessing publication bias: they essentially assume that the publication process favors large point estimates for small studies and does not affect the largest studies, and they can perform poorly when effects are heterogeneous. In light of these limitations, we recommend that meta-analyses routinely apply other publication bias methods in addition to or instead of classical funnel plot methods. To this end, we describe how to use and interpret selection models. These methods make the often more realistic assumption that publication bias favors "statistically significant" results, and the methods also directly accommodate effect heterogeneity. Selection models have been established for decades in the statistics literature and are supported by user-friendly software, yet remain rarely reported in many disciplines. We use a previously published meta-analysis to demonstrate that selection models can yield insights that extend beyond those provided by funnel plot methods, suggesting the importance of establishing more comprehensive reporting practices for publication bias assessment.

摘要

在荟萃分析中,评估发表偏倚可能对结果产生影响的程度至关重要。基于漏斗图的经典方法,包括埃格检验和修剪填充法,已成为事实上的默认评估方法,大多数顶级医学期刊中近期的荟萃分析(85%)仅使用这些方法来评估发表偏倚。然而,这些经典的漏斗图方法作为评估发表偏倚的唯一手段存在重要局限性:它们本质上假设发表过程有利于小型研究的大效应估计值,而对大型研究没有影响,并且当效应存在异质性时,它们的表现可能很差。鉴于这些局限性,我们建议荟萃分析除了使用经典漏斗图方法外,或用其他方法替代,常规应用其他发表偏倚评估方法。为此,我们描述了如何使用和解释选择模型。这些方法通常做出更符合实际的假设,即发表偏倚有利于“具有统计学意义”的结果,并且这些方法还能直接处理效应异质性。选择模型在统计学文献中已确立数十年,并且有用户友好型软件支持,但在许多学科中仍很少被报道。我们使用之前发表的一项荟萃分析来证明,选择模型能够得出超越漏斗图方法所提供的见解,这表明建立更全面的发表偏倚评估报告方法很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f47/9247867/1ab91b772ff5/CL2-18-e1256-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验