School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China.
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, USA.
Neurosci Bull. 2024 Jul;40(7):905-920. doi: 10.1007/s12264-024-01184-4. Epub 2024 Mar 15.
Functional networks (FNs) hold significant promise in understanding brain function. Independent component analysis (ICA) has been applied in estimating FNs from functional magnetic resonance imaging (fMRI). However, determining an optimal model order for ICA remains challenging, leading to criticism about the reliability of FN estimation. Here, we propose a SMART (splitting-merging assisted reliable) ICA method that automatically extracts reliable FNs by clustering independent components (ICs) obtained from multi-model-order ICA using a simplified graph while providing linkages among FNs deduced from different-model orders. We extend SMART ICA to multi-subject fMRI analysis, validating its effectiveness using simulated and real fMRI data. Based on simulated data, the method accurately estimates both group-common and group-unique components and demonstrates robustness to parameters. Using two age-matched cohorts of resting fMRI data comprising 1,950 healthy subjects, the resulting reliable group-level FNs are greatly similar between the two cohorts, and interestingly the subject-specific FNs show progressive changes while age increases. Furthermore, both small-scale and large-scale brain FN templates are provided as benchmarks for future studies. Taken together, SMART ICA can automatically obtain reliable FNs in analyzing multi-subject fMRI data, while also providing linkages between different FNs.
功能网络(FNs)在理解大脑功能方面具有重要意义。独立成分分析(ICA)已被应用于从功能磁共振成像(fMRI)中估计 FNs。然而,确定 ICA 的最佳模型阶数仍然具有挑战性,这导致了对 FN 估计可靠性的批评。在这里,我们提出了一种 SMART(分裂-合并辅助可靠)ICA 方法,该方法通过使用简化图对来自多模型阶 ICA 的独立成分(ICs)进行聚类,自动提取可靠的 FNs,同时提供不同模型阶推断出的 FNs 之间的联系。我们将 SMART ICA 扩展到多被试 fMRI 分析,使用模拟和真实 fMRI 数据验证其有效性。基于模拟数据,该方法准确估计了组共同和组独特的成分,并且对参数具有鲁棒性。使用由 1950 名健康受试者组成的两个年龄匹配的静息 fMRI 数据队列,两个队列之间的可靠组水平 FNs 非常相似,有趣的是,随着年龄的增长,特定于个体的 FNs 显示出渐进性变化。此外,还提供了小尺度和大尺度脑 FN 模板作为未来研究的基准。总之,SMART ICA 可以在分析多被试 fMRI 数据时自动获得可靠的 FNs,同时还提供了不同 FNs 之间的联系。