School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China.
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA.
Hum Brain Mapp. 2022 Aug 15;43(12):3887-3903. doi: 10.1002/hbm.25890. Epub 2022 Apr 29.
Schizophrenia (SZ) and autism spectrum disorder (ASD) sharing overlapping symptoms have a long history of diagnostic confusion. It is unclear what their differences at a brain level are. Here, we propose a multimodality fusion classification approach to investigate their divergence in brain function and structure. Using brain functional network connectivity (FNC) calculated from resting-state fMRI data and gray matter volume (GMV) estimated from sMRI data, we classify the two disorders using the main data (335 SZ and 380 ASD patients) via an unbiased 10-fold cross-validation pipeline, and also validate the classification generalization ability on an independent cohort (120 SZ and 349 ASD patients). The classification accuracy reached up to 83.08% for the testing data and 72.10% for the independent data, significantly better than the results from using the single-modality features. The discriminative FNCs that were automatically selected primarily involved the sub-cortical, default mode, and visual domains. Interestingly, all discriminative FNCs relating to the default mode network showed an intermediate strength in healthy controls (HCs) between SZ and ASD patients. Their GMV differences were mainly driven by the frontal gyrus, temporal gyrus, and insula. Regarding these regions, the mean GMV of HC fell intermediate between that of SZ and ASD, and ASD showed the highest GMV. The middle frontal gyrus was associated with both functional and structural differences. In summary, our work reveals the unique neuroimaging characteristics of SZ and ASD that can achieve high and generalizable classification accuracy, supporting their potential as disorder-specific neural substrates of the two entwined disorders.
精神分裂症 (SZ) 和自闭症谱系障碍 (ASD) 存在重叠症状,其诊断混淆的历史由来已久。目前尚不清楚它们在大脑层面上的区别是什么。在这里,我们提出了一种多模态融合分类方法,以研究它们在大脑功能和结构上的差异。我们使用静息态 fMRI 数据计算的脑功能网络连接 (FNC) 和 sMRI 数据估计的灰质体积 (GMV),通过无偏的 10 折交叉验证管道,对来自主要数据(335 名 SZ 和 380 名 ASD 患者)的两种疾病进行分类,并在独立队列(120 名 SZ 和 349 名 ASD 患者)上验证分类的泛化能力。对于测试数据,分类准确率高达 83.08%,对于独立数据,分类准确率为 72.10%,明显优于单模态特征的结果。自动选择的具有判别力的 FNC 主要涉及皮质下、默认模式和视觉区域。有趣的是,与默认模式网络相关的所有具有判别力的 FNC 在健康对照者 (HCs) 中与 SZ 和 ASD 患者之间均显示出中等强度。它们的 GMV 差异主要由额回、颞回和脑岛驱动。对于这些区域,HC 的平均 GMV 介于 SZ 和 ASD 之间,而 ASD 的 GMV 最高。中额回与功能和结构差异均有关联。总之,我们的工作揭示了 SZ 和 ASD 的独特神经影像学特征,可以实现高且可泛化的分类准确率,支持它们作为这两种交织障碍的特定于障碍的神经基础的潜力。