Pak A, Zylstra A B, Baker K L, Casey D T, Dewald E, Divol L, Hohenberger M, Moore A S, Ralph J E, Schlossberg D J, Tommasini R, Aybar N, Bachmann B, Bionta R M, Fittinghoff D, Gatu Johnson M, Geppert Kleinrath H, Geppert Kleinrath V, Hahn K D, Rubery M S, Landen O L, Moody J D, Aghaian L, Allen A, Baxamusa S H, Bhandarkar S D, Biener J, Birge N W, Braun T, Briggs T M, Choate C, Clark D S, Crippen J W, Danly C, Döppner T, Durocher M, Erickson M, Fehrenbach T, Freeman M, Havre M, Hayes S, Hilsabeck T, Holder J P, Humbird K D, Hurricane O A, Izumi N, Kerr S M, Khan S F, Kim Y H, Kong C, Jeet J, Kozioziemski B, Kritcher A L, Lamb K M, Lemos N C, MacGowan B J, Mackinnon A J, MacPhee A G, Marley E V, Meaney K, Millot M, Di Nicola J-M G, Nikroo A, Nora R, Ratledge M, Ross J S, Shin S J, Smalyuk V A, Stadermann M, Stoupin S, Suratwala T, Trosseille C, Van Wonterghem B, Weber C R, Wild C, Wilde C, Wooddy P T, Woodworth B N, Young C V
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808, USA.
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev E. 2024 Feb;109(2-2):025203. doi: 10.1103/PhysRevE.109.025203.
An indirect-drive inertial fusion experiment on the National Ignition Facility was driven using 2.05 MJ of laser light at a wavelength of 351 nm and produced 3.1±0.16 MJ of total fusion yield, producing a target gain G=1.5±0.1 exceeding unity for the first time in a laboratory experiment [Phys. Rev. E 109, 025204 (2024)10.1103/PhysRevE.109.025204]. Herein we describe the experimental evidence for the increased drive on the capsule using additional laser energy and control over known degradation mechanisms, which are critical to achieving high performance. Improved fuel compression relative to previous megajoule-yield experiments is observed. Novel signatures of the ignition and burn propagation to high yield can now be studied in the laboratory for the first time.