Ralph J E, Ross J S, Zylstra A B, Kritcher A L, Robey H F, Young C V, Hurricane O A, Pak A, Callahan D A, Baker K L, Casey D T, Döppner T, Divol L, Hohenberger M, Pape S Le, Patel P K, Tommasini R, Ali S J, Amendt P A, Atherton L J, Bachmann B, Bailey D, Benedetti L R, Berzak Hopkins L, Betti R, Bhandarkar S D, Biener J, Bionta R M, Birge N W, Bond E J, Bradley D K, Braun T, Briggs T M, Bruhn M W, Celliers P M, Chang B, Chapman T, Chen H, Choate C, Christopherson A R, Clark D S, Crippen J W, Dewald E L, Dittrich T R, Edwards M J, Farmer W A, Field J E, Fittinghoff D, Frenje J, Gaffney J, Gatu Johnson M, Glenzer S H, Grim G P, Haan S, Hahn K D, Hall G N, Hammel B A, Harte J, Hartouni E, Heebner J E, Hernandez V J, Herrmann H W, Herrmann M C, Hinkel D E, Ho D D, Holder J P, Hsing W W, Huang H, Humbird K D, Izumi N, Jarrott L C, Jeet J, Jones O, Kerbel G D, Kerr S M, Khan S F, Kilkenny J, Kim Y, Geppert-Kleinrath H, Geppert-Kleinrath V, Kong C, Koning J M, Kroll J J, Kruse M K G, Kustowski B, Landen O L, Langer S, Larson D, Lemos N C, Lindl J D, Ma T, MacDonald M J, MacGowan B J, Mackinnon A J, MacLaren S A, MacPhee A G, Marinak M M, Mariscal D A, Marley E V, Masse L, Meaney K D, Meezan N B, Michel P A, Millot M, Milovich J L, Moody J D, Moore A S, Morton J W, Murphy T J, Newman K, Di Nicola J-M G, Nikroo A, Nora R, Patel M V, Pelz L J, Peterson J L, Ping Y, Pollock B B, Ratledge M, Rice N G, Rinderknecht H G, Rosen M, Rubery M S, Salmonson J D, Sater J, Schiaffino S, Schlossberg D J, Schneider M B, Schroeder C R, Scott H A, Sepke S M, Sequoia K, Sherlock M W, Shin S, Smalyuk V A, Spears B K, Springer P T, Stadermann M, Stoupin S, Strozzi D J, Suter L J, Thomas C A, Town R P J, Trosseille C, Tubman E R, Volegov P L, Weber C R, Widmann K, Wild C, Wilde C H, Van Wonterghem B M, Woods D T, Woodworth B N, Yamaguchi M, Yang S T, Zimmerman G B
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551-0808, USA.
Pacific Fusion, Fremont, CA, 94538, USA.
Nat Commun. 2024 Apr 6;15(1):2975. doi: 10.1038/s41467-024-47302-8.
Indirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1. Analysis shows that including these three corrections alone accounts for the measured fusion performance variability in the two highest performing experimental campaigns on the NIF to within error. Here we quantify the performance sensitivity to mode-2 symmetry in the burning plasma regime and apply the results, in the form of an empirical correction to a 1D performance model. Furthermore, we find the sensitivity to mode-2 determined through a series of integrated 2D radiation hydrodynamic simulations to be consistent with the experimentally determined sensitivity only when including alpha-heating.
国家点火装置(NIF)上的间接驱动惯性约束聚变实验实现了燃烧等离子体状态,中子产额超过170千焦,约为之前记录的3倍,这是点燃等离子体的一个必要阶段。尽管存在多种导致性能高度可变的退化源,但仍取得了这些结果。此处首次展示的结果,除了先前确定的辐射混合和模式1的校正外,还包括燃烧等离子体区域中模式2不对称性的经验校正因子。分析表明,仅包括这三种校正就能将NIF上两个性能最佳的实验活动中测得的聚变性能变异性控制在误差范围内。在此,我们量化了燃烧等离子体区域中对模式2对称性的性能敏感性,并将结果以经验校正的形式应用于一维性能模型。此外,我们发现,仅当包括α加热时,通过一系列二维辐射流体动力学综合模拟确定的对模式2的敏感性才与实验确定的敏感性一致。