基于压电的杂化涂层的超声驱动自由基链式反应和免疫调节治疗植入物感染。
Ultrasound-driven radical chain reaction and immunoregulation of piezoelectric-based hybrid coating for treating implant infection.
机构信息
Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan, 030024, China.
Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan, 030024, China; College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
出版信息
Biomaterials. 2024 Jun;307:122532. doi: 10.1016/j.biomaterials.2024.122532. Epub 2024 Mar 14.
The poor efficiency of US-responsive coatings on implants restricts their practical application. Immunotherapy that stimulates immune cells to enhance their antibacterial activity is expected to synergize with sonodynamic therapy for treating implant infection effectively and safely. Herein, US-responsive hybrid coatings composed of the oxygen-deficient BaTiO nanorod arrays and l-arginine (BaTiO/LA) are designed and prepared on titanium implants for sonocatalytic therapy-cooperated immunotherapy to treat Methicillin-resistant Staphylococcus aureus (MRSA) infection. BaTiO/LA can generate more oxidizing reactive oxygen species (ROS, hydroxyl radical (·OH)) and reactive nitrogen species (RNS, peroxynitrite anion (ONOO)). The construction of nanorod arrays and oxygen defects balances the piezoelectric properties and sonocatalytic capability during US treatment. The generated piezoelectric electric field provides a sufficient driving force to separate electrons and holes, and the oxygen defects attenuate the electron-hole recombination efficiency, consequently increasing the yield of ROS during the US treatment. Moreover, nitric oxide (NO) released by l-arginine reacts with the superoxide radical (·O) to produce ONOO. Since, this radical chain reaction improves the oxidizing ability between bacteria and radicals, the cell membrane (argB, secA2) and DNA (dnaBGXN) are destroyed. The bacterial self-repair mechanism indirectly accelerates bacterial death based on the transcriptome analysis. In addition to participating in the radical chain reaction, NO positively affects macrophage M1 polarization to yield potent phagocytosis to MRSA. As a result, without introducing an extra sonosensitizer, BaTiO/LA exhibits excellent antibacterial activity against MRSA after the US treatment for 15 min. Furthermore, BaTiO/LA facilitates macrophage M2 polarization after implantation and improves osteogenic differentiation. The combined effects of sonodynamic therapy and immunoregulation lead to an effective and safe treatment method for implant-associated infections.
植入物上美国响应性涂层的低效率限制了它们的实际应用。免疫疗法刺激免疫细胞增强其抗菌活性,有望与声动力学疗法协同有效和安全地治疗植入物感染。在此,设计并制备了在钛植入物上的氧缺陷的 BaTiO 纳米棒阵列和 l-精氨酸(BaTiO/LA)组成的超声响应性混合涂层,用于声催化治疗-合作免疫疗法来治疗耐甲氧西林金黄色葡萄球菌(MRSA)感染。BaTiO/LA 可以产生更多的氧化活性氧物质(ROS,羟基自由基(·OH))和活性氮物质(RNS,过氧亚硝酸盐阴离子(ONOO))。纳米棒阵列和氧缺陷的构建在超声处理过程中平衡了压电性能和声催化能力。产生的压电电场提供了足够的驱动力来分离电子和空穴,而氧缺陷降低了电子-空穴复合效率,从而在超声处理过程中增加了 ROS 的产量。此外,l-精氨酸释放的一氧化氮(NO)与超氧自由基(·O)反应生成 ONOO。由于这种自由基链式反应提高了细菌和自由基之间的氧化能力,细胞膜(argB,secA2)和 DNA(dnaBGXN)被破坏。基于转录组分析,细菌的自我修复机制间接加速了细菌的死亡。除了参与自由基链式反应外,NO 还积极影响巨噬细胞 M1 极化,从而产生对 MRSA 的有效吞噬作用。结果,在没有引入额外的声敏剂的情况下,BaTiO/LA 在超声处理 15 分钟后对 MRSA 表现出优异的抗菌活性。此外,BaTiO/LA 促进了植入后的巨噬细胞 M2 极化,并改善了成骨分化。声动力学疗法和免疫调节的联合作用为植入物相关感染提供了一种有效和安全的治疗方法。