Suppr超能文献

“看见”电磁光谱:隐花色素光循环聚焦

'Seeing' the electromagnetic spectrum: spotlight on the cryptochrome photocycle.

作者信息

Aguida Blanche, Babo Jonathan, Baouz Soria, Jourdan Nathalie, Procopio Maria, El-Esawi Mohamed A, Engle Dorothy, Mills Stephen, Wenkel Stephan, Huck Alexander, Berg-Sørensen Kirstine, Kampranis Sotirios C, Link Justin, Ahmad Margaret

机构信息

Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France.

Department of Biophysics, Faculty of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States.

出版信息

Front Plant Sci. 2024 Mar 1;15:1340304. doi: 10.3389/fpls.2024.1340304. eCollection 2024.

Abstract

Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function. This transition involved subtle changes within the flavin binding pocket which gave rise to a visual photocycle consisting of light-inducible and dark-reversible flavin redox state transitions. In this photocycle, light first triggers flavin reduction from an initial dark-adapted resting state (FADox). The reduced state is the biologically active or 'lit' state, correlating with biological activity. Subsequently, the photoreduced flavin reoxidises back to the dark adapted or 'resting' state. Because the rate of reoxidation determines the lifetime of the signaling state, it significantly modulates biological activity. As a consequence of this redox photocycle Crys respond to both the wavelength and the intensity of light, but are in addition regulated by factors such as temperature, oxygen concentration, and cellular metabolites that alter rates of flavin reoxidation even independently of light. Mechanistically, flavin reduction is correlated with conformational change in the protein, which is thought to mediate biological activity through interaction with biological signaling partners. In addition, a second, entirely independent signaling mechanism arises from the cryptochrome photocycle in the form of reactive oxygen species (ROS). These are synthesized during flavin reoxidation, are known mediators of biotic and abiotic stress responses, and have been linked to Cry biological activity in plants and animals. Additional special properties arising from the cryptochrome photocycle include responsivity to electromagnetic fields and their applications in optogenetics. Finally, innovations in methodology such as the use of Nitrogen Vacancy (NV) diamond centers to follow cryptochrome magnetic field sensitivity are discussed, as well as the potential for a whole new technology of 'magneto-genetics' for future applications in synthetic biology and medicine.

摘要

隐花色素是广泛分布的黄素蛋白光感受器,可调节植物中许多对光的发育反应,以及动物和人类对压力的反应和生物钟的同步。所有隐花色素都与一个古老的光吸收黄素酶家族密切相关,该家族称为光解酶,它利用光作为DNA修复的能量来源,但自身没有光传感作用。在这里,我们综述了植物隐花色素获得光传感功能的方式。这种转变涉及黄素结合口袋内的细微变化,从而产生了一个由光诱导和暗可逆的黄素氧化还原状态转变组成的可见光循环。在这个光循环中,光首先触发黄素从初始暗适应静止状态(FADox)还原。还原状态是生物活性或“激活”状态,与生物活性相关。随后,光还原的黄素重新氧化回到暗适应或“静止”状态。由于重新氧化的速率决定了信号状态的寿命,它显著调节生物活性。作为这种氧化还原光循环的结果,隐花色素对光的波长和强度都有反应,但此外还受到温度、氧浓度和细胞代谢物等因素的调节,这些因素即使在没有光的情况下也会改变黄素重新氧化的速率。从机制上讲,黄素还原与蛋白质的构象变化相关,这种构象变化被认为通过与生物信号伙伴的相互作用来介导生物活性。此外,第二种完全独立的信号机制以活性氧(ROS)的形式出现在隐花色素光循环中。这些是在黄素重新氧化过程中合成的,是生物和非生物应激反应的已知介质,并且已与植物和动物中的隐花色素生物活性相关联。隐花色素光循环产生的其他特殊性质包括对电磁场的响应及其在光遗传学中的应用。最后,讨论了诸如使用氮空位(NV)金刚石中心来跟踪隐花色素磁场敏感性等方法学创新,以及全新的“磁遗传学”技术在合成生物学和医学未来应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a84/10940379/c2d37eead379/fpls-15-1340304-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验