Suppr超能文献

杨树不同叶细胞类型对水分亏缺胁迫的时空代谢响应

Spatiotemporal metabolic responses to water deficit stress in distinct leaf cell-types of poplar.

作者信息

Balasubramanian Vimal Kumar, Veličković Dušan, Rubio Wilhelmi Maria Del Mar, Anderton Christopher R, Stewart C Neal, DiFazio Stephen, Blumwald Eduardo, Ahkami Amir H

机构信息

Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, United States.

Department of Plant Sciences, University of California Davis, Davis, CA, United States.

出版信息

Front Plant Sci. 2024 Mar 1;15:1346853. doi: 10.3389/fpls.2024.1346853. eCollection 2024.

Abstract

The impact of water-deficit (WD) stress on plant metabolism has been predominantly studied at the whole tissue level. However, plant tissues are made of several distinct cell types with unique and differentiated functions, which limits whole tissue 'omics'-based studies to determine only an averaged molecular signature arising from multiple cell types. Advancements in spatial omics technologies provide an opportunity to understand the molecular mechanisms underlying plant responses to WD stress at distinct cell-type levels. Here, we studied the spatiotemporal metabolic responses of two poplar () leaf cell types -palisade and vascular cells- to WD stress using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). We identified unique WD stress-mediated metabolic shifts in each leaf cell type when exposed to early and prolonged WD stresses and recovery from stress. During water-limited conditions, flavonoids and phenolic metabolites were exclusively accumulated in leaf palisade cells. However, vascular cells mainly accumulated sugars and fatty acids during stress and recovery conditions, respectively, highlighting the functional divergence of leaf cell types in response to WD stress. By comparing our MALDI-MSI metabolic data with whole leaf tissue gas chromatography-mass spectrometry (GC-MS)-based metabolic profile, we identified only a few metabolites including monosaccharides, hexose phosphates, and palmitic acid that showed a similar accumulation trend at both cell-type and whole leaf tissue levels. Overall, this work highlights the potential of the MSI approach to complement the whole tissue-based metabolomics techniques and provides a novel spatiotemporal understanding of plant metabolic responses to WD stress. This will help engineer specific metabolic pathways at a cellular level in strategic perennial trees like poplars to help withstand future aberrations in environmental conditions and to increase bioenergy sustainability.

摘要

水分亏缺(WD)胁迫对植物代谢的影响主要是在整个组织水平上进行研究的。然而,植物组织由几种具有独特和分化功能的不同细胞类型组成,这限制了基于整个组织“组学”的研究,只能确定由多种细胞类型产生的平均分子特征。空间组学技术的进步为在不同细胞类型水平上理解植物对WD胁迫响应的分子机制提供了机会。在这里,我们使用基质辅助激光解吸/电离质谱成像(MALDI-MSI)研究了两种杨树()叶片细胞类型——栅栏细胞和维管束细胞——对WD胁迫的时空代谢响应。我们确定了在暴露于早期和长期WD胁迫以及从胁迫中恢复时,每种叶片细胞类型中独特的WD胁迫介导的代谢变化。在水分有限的条件下,黄酮类化合物和酚类代谢物仅在叶片栅栏细胞中积累。然而,维管束细胞在胁迫和恢复条件下分别主要积累糖类和脂肪酸,突出了叶片细胞类型对WD胁迫响应的功能差异。通过将我们的MALDI-MSI代谢数据与基于全叶组织气相色谱-质谱(GC-MS)的代谢谱进行比较,我们仅鉴定出少数几种代谢物,包括单糖、磷酸己糖和棕榈酸,它们在细胞类型和全叶组织水平上都呈现出相似的积累趋势。总体而言,这项工作突出了MSI方法补充基于整个组织的代谢组学技术的潜力,并提供了对植物对WD胁迫代谢响应的新的时空理解。这将有助于在杨树等战略性多年生树木的细胞水平上设计特定的代谢途径,以帮助抵御未来环境条件的异常变化,并提高生物能源的可持续性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/412d/10940329/89d3f4a36b04/fpls-15-1346853-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验