Suppr超能文献

血红蛋白微泡以及利用射频数据和深度学习预测不同氧水平

Hemoglobin Microbubbles and the Prediction of Different Oxygen Levels Using RF Data and Deep Learning.

作者信息

Pathour Teja, Chaudhary Sugandha, Sirsi Shashank R, Fei Baowei

机构信息

Center for Imaging and Surgical Innovation, University of Texas at Dallas, Richardson, TX.

Department of Bioengineering, University of Texas at Dallas, Richardson, TX.

出版信息

Proc SPIE Int Soc Opt Eng. 2023 Feb;12470. doi: 10.1117/12.2655121. Epub 2023 Apr 10.

Abstract

Ultrasound contrast agents (UCA) are gas-encapsulated microspheres that oscillate volumetrically when exposed to an ultrasound field producing backscattered signals efficiently, which can be used for improved ultrasound imaging and drug delivery applications. We developed a novel oxygen-sensitive hemoglobin-shell microbubble designed to acoustically detect blood oxygen levels. We hypothesize that structural change in hemoglobin caused due to varying oxygen levels in the body can lead to mechanical changes in the shell of the UCA. This can produce detectable changes in the acoustic response that can be used for measuring oxygen levels in the body. In this study, we have shown that oxygenated hemoglobin microbubbles can be differentiated from deoxygenated hemoglobin microbubbles using a 1D convolutional neural network using radiofrequency (RF) data. We were able to classify RF data from oxygenated and deoxygenated hemoglobin microbubbles into the two classes with a testing accuracy of 90.15%. The results suggest that oxygen content in hemoglobin affects the acoustical response and may be used for determining oxygen levels and thus could open many applications, including evaluating hypoxic regions in tumors and the brain, among other blood-oxygen-level-dependent imaging applications.

摘要

超声造影剂(UCA)是包裹气体的微球,当暴露于超声场时会发生体积振荡,从而高效产生反向散射信号,可用于改善超声成像和药物递送应用。我们开发了一种新型的对氧敏感的血红蛋白壳微泡,旨在通过声学方法检测血氧水平。我们假设,由于体内氧水平变化导致的血红蛋白结构变化会引起超声造影剂外壳的机械变化。这会在声学响应中产生可检测到的变化,可用于测量体内的氧水平。在本研究中,我们表明,使用一维卷积神经网络并利用射频(RF)数据,可以区分含氧血红蛋白微泡和脱氧血红蛋白微泡。我们能够将含氧和脱氧血红蛋白微泡的RF数据分类为两类,测试准确率为90.15%。结果表明,血红蛋白中的氧含量会影响声学响应,可用于确定氧水平,因此可能开启许多应用,包括评估肿瘤和大脑中的缺氧区域以及其他依赖血氧水平的成像应用。

相似文献

1
Hemoglobin Microbubbles and the Prediction of Different Oxygen Levels Using RF Data and Deep Learning.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12470. doi: 10.1117/12.2655121. Epub 2023 Apr 10.
2
Identifying Unique Acoustic Signatures from Chemically-Crosslinked Microbubble Clusters Using Deep Learning.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12038. doi: 10.1117/12.2611572. Epub 2022 Apr 4.
3
Development and Characterization of Hemoglobin Microbubbles for Acoustic Blood Oxygen Level Dependent Imaging.
ACS Sens. 2024 Jun 28;9(6):2826-2835. doi: 10.1021/acssensors.3c02349. Epub 2024 May 24.
4
WE-C-218-01: Ultrasound Contrast Agents.
Med Phys. 2012 Jun;39(6Part27):3953. doi: 10.1118/1.4736133.
6
Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.
Acc Chem Res. 2009 Jul 21;42(7):881-92. doi: 10.1021/ar8002442.
7
Super-Resolved Microbubble Localization in Single-Channel Ultrasound RF Signals Using Deep Learning.
IEEE Trans Med Imaging. 2022 Sep;41(9):2532-2542. doi: 10.1109/TMI.2022.3166443. Epub 2022 Aug 31.
8
[Ultrasound contrast agents--physical basics].
Radiologe. 2005 Jun;45(6):503-12. doi: 10.1007/s00117-005-1188-z.
10
Post-processing radio-frequency signal based on deep learning method for ultrasonic microbubble imaging.
Biomed Eng Online. 2019 Sep 11;18(1):95. doi: 10.1186/s12938-019-0714-6.

引用本文的文献

1
Harnessing chemically crosslinked microbubble clusters using deep learning for ultrasound contrast imaging.
J Med Imaging (Bellingham). 2025 Jul;12(4):047001. doi: 10.1117/1.JMI.12.4.047001. Epub 2025 Jul 12.

本文引用的文献

1
Identifying Unique Acoustic Signatures from Chemically-Crosslinked Microbubble Clusters Using Deep Learning.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12038. doi: 10.1117/12.2611572. Epub 2022 Apr 4.
2
Biosensors Based on Mechanical and Electrical Detection Techniques.
Sensors (Basel). 2020 Sep 30;20(19):5605. doi: 10.3390/s20195605.
3
Optical biosensors: an exhaustive and comprehensive review.
Analyst. 2020 Mar 2;145(5):1605-1628. doi: 10.1039/c9an01998g.
4
In Vivo Biosensing: Progress and Perspectives.
ACS Sens. 2017 Mar 24;2(3):327-338. doi: 10.1021/acssensors.6b00834. Epub 2017 Feb 24.
5
Convolutional Neural Networks for patient-specific ECG classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2608-11. doi: 10.1109/EMBC.2015.7318926.
6
Oxygen-Sensing Methods in Biomedicine from the Macroscale to the Microscale.
Angew Chem Int Ed Engl. 2015 Jul 13;54(29):8340-62. doi: 10.1002/anie.201410646. Epub 2015 Jun 17.
7
Redox- and hypoxia-responsive MRI contrast agents.
ChemMedChem. 2014 Jun;9(6):1116-29. doi: 10.1002/cmdc.201402034. Epub 2014 May 13.
8
Solid MRI contrast agents for long-term, quantitative in vivo oxygen sensing.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6588-93. doi: 10.1073/pnas.1400015111. Epub 2014 Apr 21.
9
What are the advantages and disadvantages of imaging modalities to diagnose wear-related corrosion problems?
Clin Orthop Relat Res. 2014 Dec;472(12):3665-73. doi: 10.1007/s11999-014-3579-9. Epub 2014 Mar 25.
10
Microbubble Compositions, Properties and Biomedical Applications.
Bubble Sci Eng Technol. 2009 Nov;1(1-2):3-17. doi: 10.1179/175889709X446507.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验