Suppr超能文献

利用深度学习在单通道超声射频信号中实现超分辨微泡定位

Super-Resolved Microbubble Localization in Single-Channel Ultrasound RF Signals Using Deep Learning.

作者信息

Blanken Nathan, Wolterink Jelmer M, Delingette Herve, Brune Christoph, Versluis Michel, Lajoinie Guillaume

出版信息

IEEE Trans Med Imaging. 2022 Sep;41(9):2532-2542. doi: 10.1109/TMI.2022.3166443. Epub 2022 Aug 31.

Abstract

Recently, super-resolution ultrasound imaging with ultrasound localization microscopy (ULM) has received much attention. However, ULM relies on low concentrations of microbubbles in the blood vessels, ultimately resulting in long acquisition times. Here, we present an alternative super-resolution approach, based on direct deconvolution of single-channel ultrasound radio-frequency (RF) signals with a one-dimensional dilated convolutional neural network (CNN). This work focuses on low-frequency ultrasound (1.7 MHz) for deep imaging (10 cm) of a dense cloud of monodisperse microbubbles (up to 1000 microbubbles in the measurement volume, corresponding to an average echo overlap of 94%). Data are generated with a simulator that uses a large range of acoustic pressures (5-250 kPa) and captures the full, nonlinear response of resonant, lipid-coated microbubbles. The network is trained with a novel dual-loss function, which features elements of both a classification loss and a regression loss and improves the detection-localization characteristics of the output. Whereas imposing a localization tolerance of 0 yields poor detection metrics, imposing a localization tolerance corresponding to 4% of the wavelength yields a precision and recall of both 0.90. Furthermore, the detection improves with increasing acoustic pressure and deteriorates with increasing microbubble density. The potential of the presented approach to super-resolution ultrasound imaging is demonstrated with a delay-and-sum reconstruction with deconvolved element data. The resulting image shows an order-of-magnitude gain in axial resolution compared to a delay-and-sum reconstruction with unprocessed element data.

摘要

最近,基于超声定位显微镜(ULM)的超分辨率超声成像备受关注。然而,ULM依赖于血管中低浓度的微气泡,最终导致采集时间较长。在此,我们提出一种替代的超分辨率方法,该方法基于使用一维扩张卷积神经网络(CNN)对单通道超声射频(RF)信号进行直接去卷积。这项工作聚焦于低频超声(1.7 MHz),用于对密集的单分散微气泡云进行深度成像(10 cm)(测量体积中多达1000个微气泡,对应平均回波重叠率为94%)。数据由模拟器生成,该模拟器使用大范围的声压(5 - 250 kPa)并捕获共振脂质包裹微气泡的完整非线性响应。该网络使用一种新颖的双损失函数进行训练,该函数兼具分类损失和回归损失的元素,并改善了输出的检测定位特性。虽然施加0的定位容差会导致较差的检测指标,但施加对应于波长4%的定位容差会使精确率和召回率均达到0.90。此外,检测随着声压增加而改善,随着微气泡密度增加而变差。通过对去卷积后的阵元数据进行延迟求和重建,展示了所提出方法在超分辨率超声成像方面的潜力。与未处理阵元数据的延迟求和重建相比,所得图像在轴向分辨率上提高了一个数量级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验