文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习模型与微卫星标记的整合:世界葡萄种质特征鉴定的新途径。

Integration of machine learning models with microsatellite markers: New avenue in world grapevine germplasm characterization.

作者信息

Abbasi Holasou Hossein, Panahi Bahman, Shahi Ali, Nami Yousef

机构信息

Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.

Department of Genomics, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.

出版信息

Biochem Biophys Rep. 2024 Mar 10;38:101678. doi: 10.1016/j.bbrep.2024.101678. eCollection 2024 Jul.


DOI:10.1016/j.bbrep.2024.101678
PMID:38495412
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10940787/
Abstract

Development of efficient analytical techniques is required for effective interpretation of biological data to take novel hypotheses and finding the critical predictive patterns. Machine Learning algorithms provide a novel opportunity for development of low-cost and practical solutions in biology. In this study, we proposed a new integrated analytical approach using supervised machine learning algorithms and microsatellites data of worldwide vitis populations. A total of 1378 wild ( spp. ) and cultivated ( spp. ) accessions of grapevine were investigated using 20 microsatellite markers. Data cleaning, feature selection, and supervised machine learning classification models vis, Naive Bayes, Support Vector Machine (SVM) and Tree Induction methods were implied to find most indicative and diagnostic alleles to represent wild/cultivated and originated geography of each population. Our combined approaches showed microsatellite markers with the highest differentiating capacity and proved efficiency for our pipeline of classification and prediction of vitis accessions. Moreover, our study proposed the best combination of markers for better distinguishing of populations, which can be exploited in future germplasm conservation and breeding programs.

摘要

为了有效地解释生物数据以提出新的假设并找到关键的预测模式,需要开发高效的分析技术。机器学习算法为生物学中低成本实用解决方案的开发提供了新的机会。在本研究中,我们提出了一种新的综合分析方法,该方法使用监督机器学习算法和全球葡萄种群的微卫星数据。使用20个微卫星标记对总共1378份野生(种)和栽培(种)葡萄品种进行了研究。采用数据清理、特征选择和监督机器学习分类模型,即朴素贝叶斯、支持向量机(SVM)和树归纳方法,来寻找最具指示性和诊断性的等位基因,以代表每个种群的野生/栽培和起源地理。我们的组合方法显示了具有最高区分能力的微卫星标记,并证明了我们对葡萄品种进行分类和预测流程的效率。此外,我们的研究提出了用于更好地区分种群的标记的最佳组合,可在未来的种质保护和育种计划中加以利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa6e/10940787/a39383acdfa1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa6e/10940787/f0f104769daa/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa6e/10940787/9cf4b94b16e2/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa6e/10940787/a39383acdfa1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa6e/10940787/f0f104769daa/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa6e/10940787/9cf4b94b16e2/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa6e/10940787/a39383acdfa1/gr3.jpg

相似文献

[1]
Integration of machine learning models with microsatellite markers: New avenue in world grapevine germplasm characterization.

Biochem Biophys Rep. 2024-3-10

[2]
Machine Learning Based Classification of Microsatellite Variation: An Effective Approach for Phylogeographic Characterization of Olive Populations.

PLoS One. 2015-11-24

[3]
Genetic diversity of wild and cultivated grapevine accessions from southeast Turkey.

Hereditas. 2014-10

[4]
Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape.

BMC Plant Biol. 2013-3-7

[5]
Genetic structure and molecular diversity of Brazilian grapevine germplasm: Management and use in breeding programs.

PLoS One. 2020-10-15

[6]
Introgression Among Cultivated and Wild Grapevine in Tuscany.

Front Plant Sci. 2020-2-28

[7]
Identification of mildew resistance in wild and cultivated Central Asian grape germplasm.

BMC Plant Biol. 2013-10-4

[8]
Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia.

BMC Plant Biol. 2018-6-27

[9]
Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines.

Mol Ecol. 2011-12-12

[10]
Distribution and Characterization of the Vitis vinifera L. subsp sylvestris in Southern Tuscany.

Recent Pat Biotechnol. 2018

引用本文的文献

[1]
Assessment of potato varieties of Lithuanian breeding resistance potato wart causative agents and late blight.

Sci Rep. 2025-2-18

本文引用的文献

[1]
Wild grapes of Armenia: unexplored source of genetic diversity and disease resistance.

Front Plant Sci. 2023-12-8

[2]
Exploring genetic diversity and population structure of a large grapevine ( L.) germplasm collection in Türkiye.

Front Plant Sci. 2023-5-10

[3]
Characterization of Simple Sequence Repeat (SSR) Markers Mined in Whole Grape Genomes.

Genes (Basel). 2023-3-7

[4]
Dual domestications and origin of traits in grapevine evolution.

Science. 2023-3-3

[5]
Integrative Systems Biology Analysis Elucidates Mastitis Disease Underlying Functional Modules in Dairy Cattle.

Front Genet. 2021-10-8

[6]
Phylogenetic Relationship Among Wild and Cultivated Grapevine in Sicily: A Hotspot in the Middle of the Mediterranean Basin.

Front Plant Sci. 2019-11-26

[7]
Integration of Cross Species RNA-seq Meta-Analysis and Machine-Learning Models Identifies the Most Important Salt Stress-Responsive Pathways in Microalga .

Front Genet. 2019-8-29

[8]
Genetic analysis of the grapevine genotypes of the Russian Vitis ampelographic collection using iPBS markers.

Genetica. 2019-2

[9]
SNP genotyping elucidates the genetic diversity of Magna Graecia grapevine germplasm and its historical origin and dissemination.

BMC Plant Biol. 2019-1-6

[10]
Genome-wide association study of berry-related traits in grape [ L.] based on genotyping-by-sequencing markers.

Hortic Res. 2019-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索