Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, (LA-REAL), Instituto de Higiene e Medicina Tropical, (IHMT), Universidade NOVA de Lisboa, (UNL), Lisbon, Portugal.
BigOmics Analytics, Lugano, Switzerland.
Front Cell Infect Microbiol. 2024 Mar 1;14:1353057. doi: 10.3389/fcimb.2024.1353057. eCollection 2024.
The global evolution of resistance to Artemisinin-based Combination Therapies (ACTs) by malaria parasites, will severely undermine our ability to control this devastating disease.
Here, we have used whole genome sequencing to characterize the genetic variation in the experimentally evolved Plasmodium chabaudi parasite clone AS-ATNMF1, which is resistant to artesunate + mefloquine.
Five novel single nucleotide polymorphisms (SNPs) were identified, one of which was a previously undescribed E738K mutation in a 26S proteasome subunit that was selected for under artesunate pressure (in AS-ATN) and retained in AS-ATNMF1. The wild type and mutated three-dimensional (3D) structure models and molecular dynamics simulations of the P. falciparum 26S proteasome subunit Rpn2 suggested that the E738K mutation could change the toroidal proteasome/cyclosome domain organization and change the recognition of ubiquitinated proteins. The mutation in the 26S proteasome subunit may therefore contribute to altering oxidation-dependent ubiquitination of the MDR-1 and/or K13 proteins and/or other targets, resulting in changes in protein turnover. In light of the alarming increase in resistance to artemisin derivatives and ACT partner drugs in natural parasite populations, our results shed new light on the biology of resistance and provide information on novel molecular markers of resistance that may be tested (and potentially validated) in the field.
疟原虫对青蒿素类复方疗法(ACTs)的全球耐药性演变,将严重削弱我们控制这种毁灭性疾病的能力。
在这里,我们使用全基因组测序来描述实验进化的伯氏疟原虫克隆 AS-ATNMF1 的遗传变异,该克隆对青蒿琥酯+甲氟喹具有耐药性。
鉴定出五个新的单核苷酸多态性(SNP),其中一个是在青蒿琥酯压力下选择的(在 AS-ATN 中)并保留在 AS-ATNMF1 中的 26S 蛋白酶体亚基 E738K 突变,以前未描述过。野生型和突变的 P. falciparum 26S 蛋白酶体亚基 Rpn2 的三维(3D)结构模型和分子动力学模拟表明,E738K 突变可能改变环体蛋白酶体/环体结构域的组织,并改变泛素化蛋白的识别。因此,26S 蛋白酶体亚基的突变可能导致依赖氧化的 MDR-1 和/或 K13 蛋白和/或其他靶标的泛素化改变,从而导致蛋白质周转的变化。鉴于天然寄生虫种群中对青蒿素衍生物和 ACT 联合用药的耐药性令人震惊地增加,我们的结果为耐药性的生物学提供了新的见解,并提供了可能在现场测试(和潜在验证)的耐药性新的分子标记。