Suppr超能文献

电荷检测质谱法揭示三聚体 SARS-CoV-2 刺突蛋白糖基化加工的异质性。

Heterogeneity of Glycan Processing on Trimeric SARS-CoV-2 Spike Protein Revealed by Charge Detection Mass Spectrometry.

机构信息

Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington Indiana 47405, United States.

Megadalton Solutions, 3520 E Bluebird Ln, Bloomington Indiana 47401, United States.

出版信息

J Am Chem Soc. 2021 Mar 17;143(10):3959-3966. doi: 10.1021/jacs.1c00353. Epub 2021 Mar 3.

Abstract

The heterogeneity associated with glycosylation of the 66 N-glycan sites on the protein trimer making up the spike (S) region of the SARS-CoV-2 virus has been assessed by charge detection mass spectrometry (CDMS). CDMS allows simultaneous measurement of the mass-to-charge ratio and charge of individual ions, so that mass distributions can be determined for highly heterogeneous proteins such as the heavily glycosylated S protein trimer. The CDMS results are compared to recent glycoproteomics studies of the structure and abundance of glycans at specific sites. Interestingly, average glycan masses determined by "top-down" CDMS measurements are 35-47% larger than those obtained from the "bottom-up" glycoproteomics studies, suggesting that the glycoproteomic measurements underestimated the abundances of larger, more-complex glycans. Moreover, the distribution of glycan masses determined by CDMS is much broader than the distribution expected from the glycoproteomics studies, assuming that glycan processing on each trimer is not correlated. The breadth of the glycan mass distribution therefore indicates heterogeneity in the extent of glycan processing of the S protein trimers, with some trimers being much more heavily processed than others. This heterogeneity may have evolved as a way of further confounding the host's immune system.

摘要

电荷检测质谱 (CDMS) 评估了构成 SARS-CoV-2 病毒刺突 (S) 区的三聚体蛋白上 66 个 N-糖基化位点的异质性。CDMS 允许同时测量单个离子的质荷比和电荷,因此可以确定高度异质的蛋白质(如高度糖基化的 S 蛋白三聚体)的质量分布。将 CDMS 结果与最近关于特定位点糖蛋白结构和丰度的糖组学研究进行了比较。有趣的是,通过“自上而下” CDMS 测量确定的平均聚糖质量比从“自下而上”糖组学研究中获得的质量大 35-47%,这表明糖组学测量低估了更大、更复杂聚糖的丰度。此外,假设每个三聚体上的聚糖加工不相关,CDMS 确定的聚糖质量分布比糖组学研究预期的分布宽得多。因此,聚糖质量分布的宽度表明 S 蛋白三聚体的聚糖加工程度存在异质性,有些三聚体比其他三聚体加工得更严重。这种异质性可能是作为进一步混淆宿主免疫系统的一种方式而进化出来的。

相似文献

1
Heterogeneity of Glycan Processing on Trimeric SARS-CoV-2 Spike Protein Revealed by Charge Detection Mass Spectrometry.
J Am Chem Soc. 2021 Mar 17;143(10):3959-3966. doi: 10.1021/jacs.1c00353. Epub 2021 Mar 3.
2
Dissecting the Heterogeneous Glycan Profiles of Recombinant Coronavirus Spike Proteins with Individual Ion Mass Spectrometry.
J Am Soc Mass Spectrom. 2024 Jan 3;35(1):62-73. doi: 10.1021/jasms.3c00309. Epub 2023 Nov 30.
3
Comparison of and Glycosylation on Spike Glycoprotein 1 of SARS-CoV-1 and MERS-CoV.
J Proteome Res. 2025 May 2;24(5):2256-2265. doi: 10.1021/acs.jproteome.4c00716. Epub 2025 Apr 7.
4
Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration.
Elife. 2020 Oct 26;9:e61552. doi: 10.7554/eLife.61552.
5
Site-specific glycosylation of SARS-CoV-2: Big challenges in mass spectrometry analysis.
Proteomics. 2022 Aug;22(15-16):e2100322. doi: 10.1002/pmic.202100322. Epub 2022 Jun 22.
6
O-glycosylation of SARS-CoV-2 spike protein by host O-glycosyltransferase strengthens its trimeric structure.
Acta Biochim Biophys Sin (Shanghai). 2024 Jul 26;56(8):1118-1129. doi: 10.3724/abbs.2024127.
8
Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages.
J Proteome Res. 2018 Mar 2;17(3):987-999. doi: 10.1021/acs.jproteome.7b00639. Epub 2018 Feb 8.
9
Structural O-Glycoform Heterogeneity of the SARS-CoV-2 Spike Protein Receptor-Binding Domain Revealed by Top-Down Mass Spectrometry.
J Am Chem Soc. 2021 Aug 11;143(31):12014-12024. doi: 10.1021/jacs.1c02713. Epub 2021 Jul 30.
10
Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike Proteins.
Mol Cell Proteomics. 2021;20:100058. doi: 10.1074/mcp.RA120.002295. Epub 2021 Feb 11.

引用本文的文献

1
Proteome-wide characterization of PTMs reveals host cell responses to viral infection and identifies putative antiviral drug targets.
Front Immunol. 2025 May 30;16:1587106. doi: 10.3389/fimmu.2025.1587106. eCollection 2025.
4
Protein Complex Heterogeneity and Topology Revealed by Electron Capture Charge Reduction and Surface Induced Dissociation.
ACS Cent Sci. 2024 Jul 26;10(8):1537-1547. doi: 10.1021/acscentsci.4c00461. eCollection 2024 Aug 28.
6
Characterization of biotinylated human ACE2 and SARS-CoV-2 Omicron BA.4/5 spike protein reference materials.
Anal Bioanal Chem. 2024 Sep;416(22):4861-4872. doi: 10.1007/s00216-024-05413-7. Epub 2024 Jun 28.
9
Interactions between carbon nanotubes and external structures of SARS-CoV-2 using molecular docking and molecular dynamics.
J Mol Struct. 2023 Aug 15;1286:135604. doi: 10.1016/j.molstruc.2023.135604. Epub 2023 Apr 18.

本文引用的文献

1
N- and O-Glycosylation of the SARS-CoV-2 Spike Protein.
Anal Chem. 2021 Feb 2;93(4):2003-2009. doi: 10.1021/acs.analchem.0c03173. Epub 2021 Jan 6.
2
Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein.
ACS Cent Sci. 2020 Oct 28;6(10):1722-1734. doi: 10.1021/acscentsci.0c01056. Epub 2020 Sep 23.
4
Global view of human protein glycosylation pathways and functions.
Nat Rev Mol Cell Biol. 2020 Dec;21(12):729-749. doi: 10.1038/s41580-020-00294-x. Epub 2020 Oct 21.
5
Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike Proteins.
Mol Cell Proteomics. 2021;20:100058. doi: 10.1074/mcp.RA120.002295. Epub 2021 Feb 11.
7
In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges.
Science. 2020 Oct 9;370(6513):203-208. doi: 10.1126/science.abd5223. Epub 2020 Aug 18.
8
Higher Resolution Charge Detection Mass Spectrometry.
Anal Chem. 2020 Aug 18;92(16):11357-11364. doi: 10.1021/acs.analchem.0c02133. Epub 2020 Aug 3.
9
Distinct conformational states of SARS-CoV-2 spike protein.
Science. 2020 Sep 25;369(6511):1586-1592. doi: 10.1126/science.abd4251. Epub 2020 Jul 21.
10
The COVID-19 MS Coalition-accelerating diagnostics, prognostics, and treatment.
Lancet. 2020 Jun 6;395(10239):1761-1762. doi: 10.1016/S0140-6736(20)31211-3. Epub 2020 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验