Goverde Casper A, Pacesa Martin, Goldbach Nicolas, Dornfeld Lars J, Balbi Petra E M, Georgeon Sandrine, Rosset Stéphane, Kapoor Srajan, Choudhury Jagrity, Dauparas Justas, Schellhaas Christian, Kozlov Simon, Baker David, Ovchinnikov Sergey, Vecchio Alex J, Correia Bruno E
bioRxiv. 2024 Mar 7:2023.05.09.540044. doi: 10.1101/2023.05.09.540044.
design of complex protein folds using solely computational means remains a significant challenge. Here, we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from GPCRs, are not found in the soluble proteome and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses reveal high thermal stability of the designs and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, standing as a proof-of-concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a expansion of the functional soluble fold space.
仅通过计算手段设计复杂的蛋白质折叠仍然是一项重大挑战。在此,我们使用一个强大的深度学习流程来设计整合膜蛋白的复杂折叠和可溶性类似物。独特的膜拓扑结构,如那些来自G蛋白偶联受体(GPCR)的结构,在可溶性蛋白质组中未被发现,并且我们证明了它们的结构特征可以在溶液中重现。生物物理分析揭示了设计的高热稳定性,实验结构显示出显著的设计准确性。可溶性类似物用天然结构基序进行了功能化,作为将膜蛋白功能引入可溶性蛋白质组的概念验证,这可能为药物发现带来新方法。总之,我们设计了复杂的蛋白质拓扑结构,并通过膜蛋白的功能对其进行了丰富,实验成功率很高,从而扩展了功能性可溶性折叠空间。