Suppr超能文献

从头设计小型β桶蛋白。

De novo design of small beta barrel proteins.

机构信息

Department of Biochemistry, University of Washington, Seattle, WA 98195.

Institute for Protein Design, University of Washington, Seattle, WA 98195.

出版信息

Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2207974120. doi: 10.1073/pnas.2207974120. Epub 2023 Mar 10.

Abstract

Small beta barrel proteins are attractive targets for computational design because of their considerable functional diversity despite their very small size (<70 amino acids). However, there are considerable challenges to designing such structures, and there has been little success thus far. Because of the small size, the hydrophobic core stabilizing the fold is necessarily very small, and the conformational strain of barrel closure can oppose folding; also intermolecular aggregation through free beta strand edges can compete with proper monomer folding. Here, we explore the de novo design of small beta barrel topologies using both Rosetta energy-based methods and deep learning approaches to design four small beta barrel folds: Src homology 3 (SH3) and oligonucleotide/oligosaccharide-binding (OB) topologies found in nature and five and six up-and-down-stranded barrels rarely if ever seen in nature. Both approaches yielded successful designs with high thermal stability and experimentally determined structures with less than 2.4 Å rmsd from the designed models. Using deep learning for backbone generation and Rosetta for sequence design yielded higher design success rates and increased structural diversity than Rosetta alone. The ability to design a large and structurally diverse set of small beta barrel proteins greatly increases the protein shape space available for designing binders to protein targets of interest.

摘要

小型β桶状蛋白因其非常小的尺寸(<70 个氨基酸),却具有相当大的功能多样性,因此成为计算设计的有吸引力的目标。然而,设计此类结构存在相当大的挑战,迄今为止,成功的案例很少。由于尺寸较小,稳定折叠的疏水性核心必然非常小,桶状闭合的构象应变可能会阻碍折叠;此外,通过游离β链边缘的分子间聚集可能会与单体的正确折叠竞争。在这里,我们使用 Rosetta 基于能量的方法和深度学习方法来探索小型β桶状拓扑结构的从头设计,以设计四种小型β桶状折叠:自然界中存在的同源 3(SH3)和寡核苷酸/寡糖结合(OB)拓扑结构,以及在自然界中很少见的五和六上下链桶。这两种方法都产生了成功的设计,具有较高的热稳定性和实验确定的结构,与设计模型的 rmsd 小于 2.4 Å。使用深度学习进行骨架生成和 Rosetta 进行序列设计比单独使用 Rosetta 产生更高的设计成功率和更高的结构多样性。设计一大组结构多样化的小型β桶状蛋白的能力大大增加了可用于设计与感兴趣的蛋白质靶标结合的蛋白质形状空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c305/10089152/57dc5d5293d0/pnas.2207974120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验