Zhou Xin, Hilk Audrey, Solis Norma V, Hogan Bode M, Bierbaum Tessa A, Filler Scott G, Burrack Laura S, Selmecki Anna
Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA.
bioRxiv. 2024 Mar 6:2024.03.06.583770. doi: 10.1101/2024.03.06.583770.
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of . Heterozygous point mutations led to single allele dysfunction of and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in Importantly, single allele dysfunction of in combination with recurrent chromosome aneuploidies resulted in azole resistance. Homozygous deletions of caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Dysfunction of resulted in transcriptional upregulation of the alternate sterol biosynthesis pathway and , a Zinc transporter. Notably, we determined that overexpression of is sufficient to increase azole tolerance in . Our combined transcriptional and phenotypic analyses revealed the pleiotropic effects of on stress responses including cell wall, osmotic and oxidative stress. Interestingly, while loss of either allele of resulted in similar antifungal drug responses, we observed functional divergence in filamentation regulation between the two alleles of ( and ) with exhibiting a dominant role in the SC5314 genetic background. Finally, in a murine model of systemic infection, homozygous deletion of resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study provides extensive genetic, transcriptional and phenotypic analysis for the effects of on drug susceptibility, fitness, filamentation and stress responses.
麦角甾醇对于真菌细胞膜的完整性和生长至关重要,许多抗真菌药物都作用于麦角甾醇。麦角甾醇生物合成基因的失活或修饰可导致抗真菌药物敏感性、丝状化及应激反应的改变。在此,我们发现在适应抗真菌药物应激过程中,麦角甾醇生物合成基因在两种不同的遗传背景下是点突变的热点区域。杂合点突变导致该基因的单个等位基因功能失调,并在两种遗传背景下均产生了对唑类药物的耐受性。这是已知的在该真菌中由点突变导致唑类药物耐受性的首个例子。重要的是,该基因的单个等位基因功能失调与反复出现的染色体非整倍体相结合导致了对唑类药物的耐药性。该基因的纯合缺失在低浓度氟康唑条件下导致适应性增加,而在丰富培养基中,尤其是在低初始细胞密度时适应性降低。该基因功能失调导致替代甾醇生物合成途径以及一个锌转运蛋白的转录上调。值得注意的是,我们确定该基因的过表达足以增加该真菌对唑类药物的耐受性。我们综合的转录和表型分析揭示了该基因对包括细胞壁、渗透和氧化应激在内的应激反应具有多效性作用。有趣的是,虽然该基因的任一等位基因缺失均导致相似的抗真菌药物反应,但我们观察到该基因的两个等位基因(和)在丝状化调控方面存在功能差异,其中在SC5314遗传背景中发挥主导作用。最后,在系统性感染的小鼠模型中,该基因的纯合缺失导致毒力降低,而杂合缺失突变体保持其致病性。总体而言,本研究提供了关于该基因对药物敏感性、适应性、丝状化及应激反应影响的广泛遗传、转录和表型分析。