Suppr超能文献

任务结构塑造了人类外侧前额叶皮层中神经表征的几何结构。

Task structure tailors the geometry of neural representations in human lateral prefrontal cortex.

作者信息

Bhandari Apoorva, Keglovits Haley, Buyukyazgan Defne, Badre David

机构信息

Department of Cognitive and Psychological Sciences, Brown University, 190 Thayer St., Providence, RI 02912, USA.

Department of Neuroscience, Brown University, Providence, RI 02912, USA.

出版信息

bioRxiv. 2025 Mar 2:2024.03.06.583429. doi: 10.1101/2024.03.06.583429.

Abstract

How do human brains represent tasks of varying structure? The lateral prefrontal cortex (lPFC) flexibly represents task information. However, principles that shape lPFC representational geometry remain unsettled. We use fMRI and pattern analyses to reveal the structure of lPFC representational geometries as humans perform two distinct categorization tasks- one with flat, conjunctive categories and another with hierarchical, context-dependent categories. We show that lPFC encodes task-relevant information with task-tailored geometries of intermediate dimensionality. These geometries preferentially enhance the separability of task-relevant variables while encoding a subset in abstract form. Specifically, in the flat task, a global axis encodes response-relevant categories abstractly, while category-specific local geometries are high-dimensional. In the hierarchy task, a global axis abstractly encodes the higher-level context, while low-dimensional, context-specific local geometries compress irrelevant information and abstractly encode the relevant information. Comparing these task geometries exposes generalizable principles by which lPFC tailors representations to different tasks.

摘要

人类大脑如何表征不同结构的任务?外侧前额叶皮层(lPFC)灵活地表征任务信息。然而,塑造lPFC表征几何结构的原则仍未确定。我们使用功能磁共振成像(fMRI)和模式分析来揭示人类执行两项不同分类任务时lPFC表征几何结构的情况,一项任务具有扁平的、联合的类别,另一项任务具有分层的、依赖上下文的类别。我们表明,lPFC通过中间维度的任务定制几何结构对任务相关信息进行编码。这些几何结构优先增强任务相关变量的可分离性,同时以抽象形式编码一个子集。具体而言,在扁平任务中,一个全局轴以抽象方式编码与反应相关的类别,而特定类别的局部几何结构是高维的。在层次任务中,一个全局轴以抽象方式编码更高层次的上下文,而低维的、特定上下文的局部几何结构压缩无关信息并以抽象方式编码相关信息。比较这些任务几何结构揭示了lPFC将表征定制为不同任务的可推广原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e6/11887784/0e88a443d588/nihpp-2024.03.06.583429v4-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验