IEEE Trans Biomed Circuits Syst. 2024 Oct;18(5):1100-1111. doi: 10.1109/TBCAS.2024.3378973. Epub 2024 Sep 26.
Intracortical brain-computer interfaces offer superior spatial and temporal resolutions, but face challenges as the increasing number of recording channels introduces high amounts of data to be transferred. This requires power-hungry data serialization and telemetry, leading to potential tissue damage risks. To address this challenge, this paper introduces an event-based neural compressive telemetry (NCT) consisting of 8 channel-rotating Δ-ADCs, an event-driven serializer supporting a proposed ternary address event representation protocol, and an event-based LVDS driver. Leveraging a high sparsity of extracellular spikes and high spatial correlation of the high-density recordings, the proposed NCT achieves a compression ratio of >11.4×, while consumes only 1 µW per channel, which is 127× more efficient than state of the art. The NCT well preserves the spike waveform fidelity, and has a low normalized RMS error <23% even with a spike amplitude down to only 31 µV.
皮层内脑机接口提供了更高的空间和时间分辨率,但随着记录通道数量的增加,需要传输大量的数据,这带来了高功耗的数据序列化和遥测技术的挑战,从而导致潜在的组织损伤风险。为了解决这一挑战,本文提出了一种基于事件的神经压缩遥测(NCT)技术,它由 8 个通道旋转的 Δ-ADC、一个支持所提出的三进制地址事件表示协议的事件驱动序列化器,以及一个基于事件的 LVDS 驱动器组成。利用细胞外尖峰的高度稀疏性和高密度记录的高度空间相关性,所提出的 NCT 实现了>11.4×的压缩比,同时每个通道仅消耗 1µW 的功率,比现有技术效率提高了 127 倍。该 NCT 很好地保留了尖峰波形的保真度,即使尖峰幅度降至仅 31µV,归一化均方根误差也<23%。