Suppr超能文献

基于事件的神经压缩遥测技术,可实现 >11 倍的无损数据压缩,适用于高带宽脑机接口。

An Event-Based Neural Compressive Telemetry With >11× Loss-Less Data Reduction for High-Bandwidth Intracortical Brain Computer Interfaces.

出版信息

IEEE Trans Biomed Circuits Syst. 2024 Oct;18(5):1100-1111. doi: 10.1109/TBCAS.2024.3378973. Epub 2024 Sep 26.

Abstract

Intracortical brain-computer interfaces offer superior spatial and temporal resolutions, but face challenges as the increasing number of recording channels introduces high amounts of data to be transferred. This requires power-hungry data serialization and telemetry, leading to potential tissue damage risks. To address this challenge, this paper introduces an event-based neural compressive telemetry (NCT) consisting of 8 channel-rotating Δ-ADCs, an event-driven serializer supporting a proposed ternary address event representation protocol, and an event-based LVDS driver. Leveraging a high sparsity of extracellular spikes and high spatial correlation of the high-density recordings, the proposed NCT achieves a compression ratio of >11.4×, while consumes only 1 µW per channel, which is 127× more efficient than state of the art. The NCT well preserves the spike waveform fidelity, and has a low normalized RMS error <23% even with a spike amplitude down to only 31 µV.

摘要

皮层内脑机接口提供了更高的空间和时间分辨率,但随着记录通道数量的增加,需要传输大量的数据,这带来了高功耗的数据序列化和遥测技术的挑战,从而导致潜在的组织损伤风险。为了解决这一挑战,本文提出了一种基于事件的神经压缩遥测(NCT)技术,它由 8 个通道旋转的 Δ-ADC、一个支持所提出的三进制地址事件表示协议的事件驱动序列化器,以及一个基于事件的 LVDS 驱动器组成。利用细胞外尖峰的高度稀疏性和高密度记录的高度空间相关性,所提出的 NCT 实现了>11.4×的压缩比,同时每个通道仅消耗 1µW 的功率,比现有技术效率提高了 127 倍。该 NCT 很好地保留了尖峰波形的保真度,即使尖峰幅度降至仅 31µV,归一化均方根误差也<23%。

相似文献

1
An Event-Based Neural Compressive Telemetry With >11× Loss-Less Data Reduction for High-Bandwidth Intracortical Brain Computer Interfaces.
IEEE Trans Biomed Circuits Syst. 2024 Oct;18(5):1100-1111. doi: 10.1109/TBCAS.2024.3378973. Epub 2024 Sep 26.
2
A Spatially Diverse 2TX-3RX Galvanic-Coupled Transdural Telemetry for Tether-Less Distributed Brain-Computer Interfaces.
IEEE Trans Biomed Circuits Syst. 2024 Oct;18(5):1014-1023. doi: 10.1109/TBCAS.2024.3373172. Epub 2024 Sep 26.
3
Deep compressive autoencoder for action potential compression in large-scale neural recording.
J Neural Eng. 2018 Dec;15(6):066019. doi: 10.1088/1741-2552/aae18d. Epub 2018 Sep 14.
4
Efficient in Vivo Neural Signal Compression Using an Autoencoder-Based Neural Network.
IEEE Trans Biomed Circuits Syst. 2024 Jun;18(3):691-701. doi: 10.1109/TBCAS.2024.3359994. Epub 2024 May 28.
5
A closed-loop compressive-sensing-based neural recording system.
J Neural Eng. 2015 Jun;12(3):036005. doi: 10.1088/1741-2560/12/3/036005. Epub 2015 Apr 15.
6
Data compression in brain-machine/computer interfaces based on the Walsh-Hadamard transform.
IEEE Trans Biomed Circuits Syst. 2014 Feb;8(1):129-37. doi: 10.1109/TBCAS.2013.2258669.
7
Calibration-Free and Hardware-Efficient Neural Spike Detection for Brain Machine Interfaces.
IEEE Trans Biomed Circuits Syst. 2023 Aug;17(4):725-740. doi: 10.1109/TBCAS.2023.3278531. Epub 2023 Oct 6.
8
Wireless gigabit data telemetry for large-scale neural recording.
IEEE J Biomed Health Inform. 2015 May;19(3):949-57. doi: 10.1109/JBHI.2015.2416202. Epub 2015 Mar 24.
9
Wireless transmission of neural signals using entropy and mutual information compression.
IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):35-44. doi: 10.1109/TNSRE.2010.2070078. Epub 2010 Sep 2.
10
Compact and Low-Power Neural Spike Compression Using Undercomplete Autoencoders.
IEEE Trans Neural Syst Rehabil Eng. 2019 Aug;27(8):1529-1538. doi: 10.1109/TNSRE.2019.2929081. Epub 2019 Jul 16.

引用本文的文献

1
Real-time, neural signal processing for high-density brain-implantable devices.
Bioelectron Med. 2025 Jul 19;11(1):17. doi: 10.1186/s42234-025-00177-6.

本文引用的文献

1
An Implantable Neuromorphic Sensing System Featuring Near-sensor Computation and Send-on-Delta Transmission for Wireless Neural Sensing of Peripheral Nerves.
IEEE J Solid-State Circuits. 2022 Oct;57(10):3058-3070. doi: 10.1109/JSSC.2022.3193846. Epub 2022 Aug 17.
2
μBrain: An Event-Driven and Fully Synthesizable Architecture for Spiking Neural Networks.
Front Neurosci. 2021 May 19;15:664208. doi: 10.3389/fnins.2021.664208. eCollection 2021.
3
Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings.
Science. 2021 Apr 16;372(6539). doi: 10.1126/science.abf4588.
4
Neuropsychological and neurophysiological aspects of brain-computer-interface (BCI) control in paralysis.
J Physiol. 2021 May;599(9):2351-2359. doi: 10.1113/JP278775. Epub 2020 Mar 28.
5
A Compact Quad-Shank CMOS Neural Probe With 5,120 Addressable Recording Sites and 384 Fully Differential Parallel Channels.
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1625-1634. doi: 10.1109/TBCAS.2019.2942450. Epub 2019 Sep 19.
6
A Sub- μW/Ch Analog Front-End for ∆-Neural Recording With Spike-Driven Data Compression.
IEEE Trans Biomed Circuits Syst. 2019 Feb;13(1):1-14. doi: 10.1109/TBCAS.2018.2880257. Epub 2018 Nov 9.
7
Brain Computer Interfaces in Rehabilitation Medicine.
PM R. 2018 Sep;10(9 Suppl 2):S233-S243. doi: 10.1016/j.pmrj.2018.05.028.
8
Tools for probing local circuits: high-density silicon probes combined with optogenetics.
Neuron. 2015 Apr 8;86(1):92-105. doi: 10.1016/j.neuron.2015.01.028.
9
An analogue front-end model for developing neural spike sorting systems.
IEEE Trans Biomed Circuits Syst. 2014 Apr;8(2):216-27. doi: 10.1109/TBCAS.2014.2313087. Epub 2014 Apr 28.
10
An implantable wireless neural interface for recording cortical circuit dynamics in moving primates.
J Neural Eng. 2013 Apr;10(2):026010. doi: 10.1088/1741-2560/10/2/026010. Epub 2013 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验