Suppr超能文献

加拿大家庭医学研究中的人工智能:现状与未来方向:加拿大医师学院人工智能工作组的报告。

Artificial intelligence for family medicine research in Canada: current state and future directions: Report of the CFPC AI Working Group.

机构信息

Adjunct Research Professor in the Department of Epidemiology and Biostatistics in the Schulich School of Medicine and Dentistry at Western University in London, Ont.

Doctoral candidate in the School of Computing at Queen's University in Kingston, Ont.

出版信息

Can Fam Physician. 2024 Mar;70(3):161-168. doi: 10.46747/cfp.7003161.

Abstract

OBJECTIVE

To understand the current landscape of artificial intelligence (AI) for family medicine (FM) research in Canada, identify how the College of Family Physicians of Canada (CFPC) could support near-term positive progress in this field, and strengthen the community working in this field.

COMPOSITION OF THE COMMITTEE

Members of a scientific planning committee provided guidance alongside members of a CFPC staff advisory committee, led by the CFPC-AMS TechForward Fellow and including CFPC, FM, and AI leaders.

METHODS

This initiative included 2 projects. First, an environmental scan of published and gray literature on AI for FM produced between 2018 and 2022 was completed. Second, an invitational round table held in April 2022 brought together AI and FM experts and leaders to discuss priorities and to create a strategy for the future.

REPORT

The environmental scan identified research related to 5 major domains of application in FM (preventive care and risk profiling, physician decision support, operational efficiencies, patient self-management, and population health). Although there had been little testing or evaluation of AI-based tools in practice settings, progress since previous reviews has been made in engaging stakeholders to identify key considerations about AI for FM and opportunities in the field. The round-table discussions further emphasized barriers to and facilitators of high-quality research; they also indicated that while there is immense potential for AI to benefit FM practice, the current research trajectory needs to change, and greater support is needed to achieve these expected benefits and to avoid harm.

CONCLUSION

Ten candidate action items that the CFPC could adopt to support near-term positive progress in the field were identified, some of which an AI working group has begun pursuing. Candidate action items are roughly divided into avenues where the CFPC is well-suited to take a leadership role in tackling priority issues in AI for FM research and specific activities or initiatives the CFPC could complete. Strong FM leadership is needed to advance AI research that will contribute to positive transformation in FM.

摘要

目的

了解加拿大家庭医学(FM)人工智能(AI)研究的现状,确定加拿大家庭医生学院(CFPC)如何在该领域支持近期的积极进展,并加强该领域的社区工作。

委员会组成

科学规划委员会的成员提供指导,同时还有 CFPC 工作人员咨询委员会的成员,由 CFPC-AMS TechForward 研究员领导,包括 CFPC、FM 和 AI 领导者。

方法

该倡议包括 2 个项目。首先,对 2018 年至 2022 年期间发表的和灰色文献中关于 FM 的 AI 进行了环境扫描。其次,2022 年 4 月举行了一次特邀圆桌会议,召集了 AI 和 FM 专家和领导人,讨论优先事项,并为未来制定战略。

报告

环境扫描确定了与 FM 应用的 5 个主要领域相关的研究,包括预防保健和风险分析、医生决策支持、运营效率、患者自我管理和人口健康。尽管在实践环境中对基于 AI 的工具的测试或评估很少,但自上次审查以来,在让利益相关者参与确定 FM 中 AI 的关键考虑因素和该领域的机会方面已经取得了进展。圆桌会议的讨论进一步强调了高质量研究的障碍和促进因素;他们还指出,虽然 AI 具有巨大的潜力造福 FM 实践,但目前的研究轨迹需要改变,需要更多的支持来实现这些预期的好处,并避免造成伤害。

结论

确定了 CFPC 可以采取的 10 项支持该领域近期积极进展的候选行动项目,其中一些项目 AI 工作组已经开始实施。候选行动项目大致分为 CFPC 适合在解决 FM 人工智能研究优先问题方面发挥领导作用的途径,以及 CFPC 可以完成的具体活动或倡议。需要强大的 FM 领导力来推进人工智能研究,为 FM 的积极转型做出贡献。

相似文献

6
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

本文引用的文献

5
Advancing primary care with Artificial Intelligence and Machine Learning.利用人工智能和机器学习推进初级医疗保健。
Healthc (Amst). 2022 Mar;10(1):100594. doi: 10.1016/j.hjdsi.2021.100594. Epub 2021 Dec 23.
6
Primer for artificial intelligence in primary care.基层医疗中的人工智能入门指南。
Can Fam Physician. 2021 Dec;67(12):889-893. doi: 10.46747/cfp.6712889.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验