Departments of Epidemiology & Biostatistics and Computer Science, Western University, London, Ontario, Canada
Departments of Epidemiology & Biostatistics, Family Medicine, Schulich Interfaculty Program in Public Health, Western University, London, Ontario, Canada.
Ann Fam Med. 2020 May;18(3):250-258. doi: 10.1370/afm.2518.
Rapid increases in technology and data motivate the application of artificial intelligence (AI) to primary care, but no comprehensive review exists to guide these efforts. Our objective was to assess the nature and extent of the body of research on AI for primary care.
We performed a scoping review, searching 11 published or gray literature databases with terms pertaining to AI (eg, machine learning, bayes* network) and primary care (eg, general pract*, nurse). We performed title and abstract and then full-text screening using Covidence. Studies had to involve research, include both AI and primary care, and be published in Eng-lish. We extracted data and summarized studies by 7 attributes: purpose(s); author appointment(s); primary care function(s); intended end user(s); health condition(s); geographic location of data source; and AI subfield(s).
Of 5,515 unique documents, 405 met eligibility criteria. The body of research focused on developing or modifying AI methods (66.7%) to support physician diagnostic or treatment recommendations (36.5% and 13.8%), for chronic conditions, using data from higher-income countries. Few studies (14.1%) had even a single author with a primary care appointment. The predominant AI subfields were supervised machine learning (40.0%) and expert systems (22.2%).
Research on AI for primary care is at an early stage of maturity. For the field to progress, more interdisciplinary research teams with end-user engagement and evaluation studies are needed.
技术和数据的快速增长促使人工智能(AI)在初级保健中得到应用,但目前还没有全面的综述来指导这些工作。我们的目的是评估 AI 在初级保健中的研究现状和范围。
我们进行了范围综述,使用与 AI(例如机器学习、贝叶斯网络)和初级保健(例如全科医生、护士)相关的术语,在 11 个已发表或灰色文献数据库中进行了检索。我们使用 Covidence 进行了标题和摘要筛选,然后进行全文筛选。研究必须涉及研究,包括 AI 和初级保健,并以英文发表。我们通过 7 个属性提取数据并总结研究:目的(s);作者任命(s);初级保健功能(s);预期最终用户(s);健康状况(s);数据源的地理位置(s);和 AI 子领域(s)。
在 5515 篇独特的文献中,有 405 篇符合入选标准。该研究领域主要集中在开发或修改 AI 方法(66.7%)以支持医生的诊断或治疗建议(36.5%和 13.8%),用于慢性疾病,并使用来自高收入国家的数据。很少有研究(14.1%)有一个以上的主要保健任命的作者。主要的 AI 子领域是监督机器学习(40.0%)和专家系统(22.2%)。
AI 在初级保健中的研究处于早期成熟阶段。为了使该领域取得进展,需要更多具有最终用户参与和评估研究的跨学科研究团队。