Suppr超能文献

利用可编程类高斯存储晶体管实现的高度并行和超低功耗概率推理。

Highly parallel and ultra-low-power probabilistic reasoning with programmable gaussian-like memory transistors.

作者信息

Lee Changhyeon, Rahimifard Leila, Choi Junhwan, Park Jeong-Ik, Lee Chungryeol, Kumar Divake, Shukla Priyesh, Lee Seung Min, Trivedi Amit Ranjan, Yoo Hocheon, Im Sung Gap

机构信息

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.

Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.

出版信息

Nat Commun. 2024 Mar 18;15(1):2439. doi: 10.1038/s41467-024-46681-2.

Abstract

Probabilistic inference in data-driven models is promising for predicting outputs and associated confidence levels, alleviating risks arising from overconfidence. However, implementing complex computations with minimal devices still remains challenging. Here, utilizing a heterojunction of p- and n-type semiconductors coupled with separate floating-gate configuration, a Gaussian-like memory transistor is proposed, where a programmable Gaussian-like current-voltage response is achieved within a single device. A separate floating-gate structure allows for exquisite control of the Gaussian-like current output to a significant extent through simple programming, with an over 10000 s retention performance and mechanical flexibility. This enables physical evaluation of complex distribution functions with the simplified circuit design and higher parallelism. Successful implementation for localization and obstacle avoidance tasks is demonstrated using Gaussian-like curves produced from Gaussian-like memory transistor. With its ultralow-power consumption, simplified design, and programmable Gaussian-like outputs, our 3-terminal Gaussian-like memory transistor holds potential as a hardware platform for probabilistic inference computing.

摘要

数据驱动模型中的概率推理在预测输出和相关置信水平、减轻过度自信带来的风险方面很有前景。然而,用最少的器件实现复杂计算仍然具有挑战性。在此,利用p型和n型半导体的异质结以及单独的浮栅配置,提出了一种类高斯记忆晶体管,其中在单个器件内实现了可编程的类高斯电流-电压响应。单独的浮栅结构允许通过简单编程在很大程度上精确控制类高斯电流输出,具有超过10000秒的保持性能和机械灵活性。这使得能够通过简化的电路设计和更高的并行性对复杂分布函数进行物理评估。利用类高斯记忆晶体管产生的类高斯曲线,演示了在定位和避障任务中的成功实现。凭借其超低功耗、简化设计和可编程的类高斯输出,我们的三端类高斯记忆晶体管有望成为概率推理计算的硬件平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dca/10948914/9d89be13322d/41467_2024_46681_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验