Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France.
Sanofi R&D, Integrated Drug Discovery, CRVA, 94403, Vitry-sur-Seine, France.
Nat Commun. 2024 Mar 18;15(1):2414. doi: 10.1038/s41467-024-46677-y.
Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.
IV 型菌毛(T4P)是致病性细菌中普遍存在的聚合表面结构,使其成为有效疫苗的理想靶点。然而,细菌已经进化出有效的策略来逃避 IV 型菌毛定向的抗体反应。脑膜炎奈瑟菌是表达 IV 型菌毛的革兰氏阴性细菌的典型代表,可导致危及生命的败血症和脑膜炎。该物种已经进化出几种遗传策略来修饰其 IV 型菌毛的表面,改变菌毛亚单位的氨基酸序列、糖基化和磷酸化形式,但这些修饰如何影响抗体在结构水平上的结合仍然未知。在这里,为了探索这个问题,我们确定了具有足够高分辨率的不同序列类型菌毛的冷冻电子显微镜(cryo-EM)结构,以可视化翻译后修饰。然后,我们生成针对 IV 型菌毛的纳米抗体,这些纳米抗体在体外和体内改变菌毛功能。cryo-EM 与纳米抗体-菌毛复合物的分子动力学模拟相结合,揭示了不同类型菌毛表面修饰如何改变纳米抗体的结合。我们的研究结果阐明了细菌用来避免抗体结合的不同策略之间令人印象深刻的互补性。重要的是,我们还表明,可以利用结构信息对纳米抗体进行明智的修饰,作为对抗这些免疫逃避机制的对策。