Huang Shuo, Zhong Lujia, Shi Yonggang
Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA.
Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA.
Comput Diffus MRI. 2023;14328:58-69. doi: 10.1007/978-3-031-47292-3_6. Epub 2024 Feb 7.
Susceptibility-induced distortion is a common artifact in diffusion MRI (dMRI), which deforms the dMRI locally and poses significant challenges in connectivity analysis. While various methods were proposed to correct the distortion, residual distortions often persist at varying degrees across brain regions and subjects. Generating a voxel-level residual distortion severity map can thus be a valuable tool to better inform downstream connectivity analysis. To fill this current gap in dMRI analysis, we propose a supervised deep-learning network to predict a severity map of residual distortion. The training process is supervised using the structural similarity index measure (SSIM) of the fiber orientation distribution (FOD) in two opposite phase encoding (PE) directions. Only b0 images and related outputs from the distortion correction methods are needed as inputs in the testing process. The proposed method is applicable in large-scale datasets such as the UK Biobank, Adolescent Brain Cognitive Development (ABCD), and other emerging studies that only have complete dMRI data in one PE direction but acquires b0 images in both PEs. In our experiments, we trained the proposed model using the Lifespan Human Connectome Project Aging (HCP-Aging) dataset and apply the trained model to data from UK Biobank. Our results show low training, validation, and test errors, and the severity map correlates excellently with an FOD integrity measure in both HCP-Aging and UK Biobank data. The proposed method is also highly efficient and can generate the severity map in around 1 second for each subject.
敏感性诱导失真在扩散磁共振成像(dMRI)中是一种常见的伪影,它会使dMRI局部变形,并在连接性分析中带来重大挑战。虽然已经提出了各种方法来校正失真,但残余失真在不同脑区和受试者中往往会不同程度地持续存在。因此,生成体素级残余失真严重程度图可能是一个有价值的工具,能为下游的连接性分析提供更好的信息。为了填补dMRI分析中的这一当前空白,我们提出了一种监督深度学习网络来预测残余失真的严重程度图。训练过程使用两个相反相位编码(PE)方向上纤维取向分布(FOD)的结构相似性指数测量(SSIM)进行监督。在测试过程中,仅需要b0图像和失真校正方法的相关输出作为输入。所提出的方法适用于大规模数据集,如英国生物银行、青少年大脑认知发展(ABCD)以及其他仅在一个PE方向上有完整dMRI数据但在两个PE方向上都采集了b0图像的新兴研究。在我们的实验中,我们使用寿命期人类连接组计划衰老(HCP-Aging)数据集训练了所提出的模型,并将训练好的模型应用于来自英国生物银行的数据。我们的结果显示出较低的训练、验证和测试误差,并且严重程度图与HCP-Aging和英国生物银行数据中的FOD完整性测量具有极好的相关性。所提出的方法也非常高效,每个受试者大约1秒就能生成严重程度图。