Huang Shuo, Zhong Lujia, Shi Yonggang
Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA.
Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981302. Epub 2025 May 12.
Fiber orientation distributions (FODs) are widely used in connectome analysis based on diffusion MRI. Spherical harmonics (SPHARMs) are often used for the efficient representation of FODs; however, SPHARMs over the 3-D image volume are in essence four-dimensional. This makes it highly memory-consuming for applying advanced deep learning methods, such as the transformer and diffusion model, to FODs represented by high order SPHARMs. In this work, we present an order-balanced order-level (OBOL) autoencoder to compress the FODs with high accuracy after decoding. Our OBOL method uses separate encoders for FODs in each SPHARM order to balance the feature map size of FODs in different orders. This helps the encoder to better preserve information from the low-order coefficients that have more information but a smaller number of volumes. In our experiments, we demonstrated that the decoded FODs of our OBOL autoencoder have better accuracy than the spatial-level or order-level autoencoder without order balance. We also tested the encoded latent space of the OBOL autoencoder in FOD super-resolution. Results show high accuracy with feasible memory usage in commonly available GPUs.
纤维取向分布(FODs)在基于扩散磁共振成像的连接组分析中被广泛应用。球谐函数(SPHARMs)常被用于高效表示FODs;然而,三维图像体积上的SPHARMs本质上是四维的。这使得将先进的深度学习方法,如变压器和扩散模型,应用于由高阶SPHARMs表示的FODs时,内存消耗极大。在这项工作中,我们提出了一种阶次平衡阶次水平(OBOL)自动编码器,用于在解码后高精度压缩FODs。我们的OBOL方法在每个SPHARMs阶次中为FODs使用单独的编码器,以平衡不同阶次FODs的特征图大小。这有助于编码器更好地保留来自低阶系数的信息,这些低阶系数虽数量较少但包含更多信息。在我们的实验中,我们证明了我们的OBOL自动编码器解码后的FODs比没有阶次平衡的空间水平或阶次水平自动编码器具有更高的精度。我们还在FOD超分辨率中测试了OBOL自动编码器的编码潜在空间。结果表明,在常用的GPU中,该方法在内存使用可行的情况下具有高精度。