Suppr超能文献

用于从扩散磁共振成像中获取四维纤维取向分布的自动编码器

AUTOENCODER FOR 4-DIMENSIONAL FIBER ORIENTATION DISTRIBUTIONS FROM DIFFUSION MRI.

作者信息

Huang Shuo, Zhong Lujia, Shi Yonggang

机构信息

Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA.

Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981302. Epub 2025 May 12.

Abstract

Fiber orientation distributions (FODs) are widely used in connectome analysis based on diffusion MRI. Spherical harmonics (SPHARMs) are often used for the efficient representation of FODs; however, SPHARMs over the 3-D image volume are in essence four-dimensional. This makes it highly memory-consuming for applying advanced deep learning methods, such as the transformer and diffusion model, to FODs represented by high order SPHARMs. In this work, we present an order-balanced order-level (OBOL) autoencoder to compress the FODs with high accuracy after decoding. Our OBOL method uses separate encoders for FODs in each SPHARM order to balance the feature map size of FODs in different orders. This helps the encoder to better preserve information from the low-order coefficients that have more information but a smaller number of volumes. In our experiments, we demonstrated that the decoded FODs of our OBOL autoencoder have better accuracy than the spatial-level or order-level autoencoder without order balance. We also tested the encoded latent space of the OBOL autoencoder in FOD super-resolution. Results show high accuracy with feasible memory usage in commonly available GPUs.

摘要

纤维取向分布(FODs)在基于扩散磁共振成像的连接组分析中被广泛应用。球谐函数(SPHARMs)常被用于高效表示FODs;然而,三维图像体积上的SPHARMs本质上是四维的。这使得将先进的深度学习方法,如变压器和扩散模型,应用于由高阶SPHARMs表示的FODs时,内存消耗极大。在这项工作中,我们提出了一种阶次平衡阶次水平(OBOL)自动编码器,用于在解码后高精度压缩FODs。我们的OBOL方法在每个SPHARMs阶次中为FODs使用单独的编码器,以平衡不同阶次FODs的特征图大小。这有助于编码器更好地保留来自低阶系数的信息,这些低阶系数虽数量较少但包含更多信息。在我们的实验中,我们证明了我们的OBOL自动编码器解码后的FODs比没有阶次平衡的空间水平或阶次水平自动编码器具有更高的精度。我们还在FOD超分辨率中测试了OBOL自动编码器的编码潜在空间。结果表明,在常用的GPU中,该方法在内存使用可行的情况下具有高精度。

相似文献

1
AUTOENCODER FOR 4-DIMENSIONAL FIBER ORIENTATION DISTRIBUTIONS FROM DIFFUSION MRI.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981302. Epub 2025 May 12.
3
FOD-Net: A deep learning method for fiber orientation distribution angular super resolution.
Med Image Anal. 2022 Jul;79:102431. doi: 10.1016/j.media.2022.102431. Epub 2022 Apr 6.
4
Enhancing the estimation of fiber orientation distributions using convolutional neural networks.
Comput Biol Med. 2021 Aug;135:104643. doi: 10.1016/j.compbiomed.2021.104643. Epub 2021 Jul 14.
5
Implicit neural representation of multi-shell constrained spherical deconvolution for continuous modeling of diffusion MRI.
Imaging Neurosci (Camb). 2025 Mar 6;3. doi: 10.1162/imag_a_00501. eCollection 2025 Mar 1.
6
NVAM-Net: deep learning networks for reconstructing high-quality fiber orientation distributions.
Neuroradiology. 2024 Jul;66(7):1177-1187. doi: 10.1007/s00234-024-03341-y. Epub 2024 Apr 2.
7
Generalized Richardson-Lucy (GRL) for analyzing multi-shell diffusion MRI data.
Neuroimage. 2020 Sep;218:116948. doi: 10.1016/j.neuroimage.2020.116948. Epub 2020 May 16.

本文引用的文献

1
Automated Mapping of Residual Distortion Severity in Diffusion MRI.
Comput Diffus MRI. 2023;14328:58-69. doi: 10.1007/978-3-031-47292-3_6. Epub 2024 Feb 7.
2
FOD-Net: A deep learning method for fiber orientation distribution angular super resolution.
Med Image Anal. 2022 Jul;79:102431. doi: 10.1016/j.media.2022.102431. Epub 2022 Apr 6.
3
Unsupervised Deep Learning for FOD-Based Susceptibility Distortion Correction in Diffusion MRI.
IEEE Trans Med Imaging. 2022 May;41(5):1165-1175. doi: 10.1109/TMI.2021.3134496. Epub 2022 May 2.
4
The UK Biobank resource with deep phenotyping and genomic data.
Nature. 2018 Oct;562(7726):203-209. doi: 10.1038/s41586-018-0579-z. Epub 2018 Oct 10.
5
Susceptibility-induced distortion that varies due to motion: Correction in diffusion MR without acquiring additional data.
Neuroimage. 2018 May 1;171:277-295. doi: 10.1016/j.neuroimage.2017.12.040. Epub 2017 Dec 24.
6
Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes.
Neuroimage. 2015 Nov 15;122:166-76. doi: 10.1016/j.neuroimage.2015.07.067. Epub 2015 Jul 30.
7
Fiber Orientation and Compartment Parameter Estimation From Multi-Shell Diffusion Imaging.
IEEE Trans Med Imaging. 2015 Nov;34(11):2320-32. doi: 10.1109/TMI.2015.2430850. Epub 2015 May 7.
8
UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age.
PLoS Med. 2015 Mar 31;12(3):e1001779. doi: 10.1371/journal.pmed.1001779. eCollection 2015 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验